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Unidimensional modellization of dynamic footing behaviour
Modélisation unidimensionnelle du comportement dynamique d'une fondation superficielle
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SYNOPSIS

A physical one-dimensional model is presented to reproduce the dynamic behaviour

of a circular rigid footing resting on a semi-infinite medium. In this simplified approach, the
semi-infinite medium is replaced by a solid of increasing section resting on a single degree-of-
freedom system. After checking the agreement between the discrete model and the homogeneous elastic

medium,
model besides footing analysis is given.

INTRODUCTION

The dynamic behaviour of a circular footing
resting on top of an homogeneous elastic half-
space has been investigated by Reissner (1936),
Quinlan (1953), Sung (1953) and Hiesh (1962).
For a rigid footing the vertical displacement
functions were found by Bycroft (1956) whereas
Lysmer (1965) introduced a single degree of
freedom system which has practically the same
behaviour. For harmonic behaviour, one defines
the uniform vertical movement u of the footing
with (fig. l.a)
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u,: amplitude of the harmonic movement
w : circular frequency of the movement
t : time
Q,: amplitude of force
G : shear modulus of the elastic half-

%pace . .

fl' 5 : displacement functions

The Lysmer analog is governed by the following
equation : (fig. l.c.)
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in which : mass of the footing
radius of the circular footing
Poisson's ratio of the elastic
medium
the mass density of the medium
Q : QO elu)t

force
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This analog has brought a clear simplification
of the behaviour of a rigid footing but its
generalisation to non-homogenous and non-elastic
media is not straightforward. Funston and Hall
(1967) have considered a hyperbolic tangent law
for the static reaction and have deduced
equivalent moduli and damping constants.

In order to introduce the effects of
heterogeneity and of non-linearity, it is best

the behaviour of a heterogeneous medium is investigated. A practical application of the

to model the behaviour of the medium locally.
Finite element methods can be used but a much
simpler approach can be investigated, based on
the concept of the equivalent solid.

THE EQUIVALENT SOLID

Though primitive, the concept of the equivalent
solid (Pauw 1954) can now be pursued again,
thanks to the reference solution given by
Lysmer. Since we shall assume that the solid
deforms vertically in order to obtain a one-
dimensional model in the vertical direction, the
parameters defining the equivalent solid are
(fig. 1.b.) :

: the mass attached to the footing

the mass density of the solid

the vertical modulus of deformation
the horizontal section of the solid
as a function of the depth; or its
radius r(z)

N Bl =l
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H : the height of the solid
ky: the spring constant at the base of
the model
Cy: the damping constant at the base of
the model
The model will conform to the following

conditions :

- exact static deflection

- adequate harmonic behaviour of a mass
less disk

- adequate harmonic behaviour with mass
attached to the footing

As the number of conditions is smaller than the
unkown constants and functions, we shall keep

constant some the physical properties of the
model :

M = m, the real mass of the footing

P = p, the mass density of the medium

H should be arbitrarily chosen, but k

and Cy would be determined therefrom.
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Figure 1

a) Elastic half-space b) Equivalent Solid

From these
G(z) or

assumptions, the
r(z) and Ev.

main unknowns are

For the
load Q,

static deflection
we assume

of the footing under

+ As 3)
with §77 = A4 AGRVA thie static deflection of the

footing on the half-space

sH = r(Hj the static deflection of the
rigid base of the solid resting on
the half-space below depth H
H

As = / g n the compression of the

equivalent solid

Writing the
incremental

conditon
form,

(3) for any depth
since the

under an
displacement is

uniform through any horizontal section of the
solid, we get
Q dz
sz ~ sz+dz + Q(z) EMT

which can be expressed by

1-v

1-v dz
4U (r+ar) nr (r+dr)

from which we obtain a very simple expression

dr = 4G E

clz  (i-v) E MTET = ) o) *
We deduce from this expression that the
equivalent solid is a frustrum of a cone whose
current radius 1is given by

r(z) = R + az (5)
with ., =B 2

n (1-v2)

For the dynamic behaviour, we assume that the
mechanical impedance of a current section be

equal to the damping of Lysmer®"s analog at that
level
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c) Lysmer®"s Analog d) Discretized model
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This condition can be transformed into
7

\Y 0.85 (1l-v)2 @
Substituting (7) in (4), one obtains

a = = 1-v (8)

Qﬁ /0TH5

which means that the opening angle of the

equivalent frustum of a cone depends only on the
value of v. In principle for the elastic case,
the lower boundary of the solid can be chosen at
any depth, provided it rests on its own Lysmer"s
analog defined by

L - AerH) )

(10)

HOMOGENEOUS ELASTIC CASE

The behaviour of the equivalent one-dimensional
model <can be computed using a lumped parameter
approach and integrating explicitly the
equations of movement, using a sufficiently
short time interval At. The cone 1is replaced by
n+tl masses and n springs obtained from its

discretization in the vertical direction

nr2(zi) pH :
i=0 to n

an

i+ i=l to n (12)
The mass at the top is
mass of the

mass at the

to the sum of the
and mQ/2 whereas the
is equal to mn/2.

equal
foundation
lower boundary

The parameters of the problem solved have
chosen so as to obtain easily adimensional

been
data:

with Vs shear wave velocity
aQ : adimensional frequency
B : adimensional mass parameter



v = 1/3 vs = /G/p = 50 m/s
G =5 MPa S, =1m
R=1m
_ uR u irad/sil
Q = 30 MN ao - =---— 51/
- n 1—v m mjMkal
p=0.002 Mkg/m3 Bz = - a{4>i2y

The force
the model so

signal 1is
that

applied to the top mass of
transient behaviour <can be

handled and the response displacement is
computed. For a periodic force signal, the
integration is conducted until the movement
becomes periodic and its amplitude 1is obtained.
The results which are compared to the Lysmer
solution in figure 2 have been obtained from

such a procedure on a solid with a thickness of
14 m and divided into 28 elements. The time
increment (1 ms) was less than a quarter of the
critical time interval. The agreement between
the magnification curves computed for various
mass ratio by both methods 1is very satisfactory.

GENERALIZATION OF THE MODEL

Since a one-dimensional model has been found
that matches the behaviour of the homogeneous
elastic medium, one is tempted to generalize the
field of application by introducing local
properties of the subsoil, It seems indeed
reasonable to assume that the heterogeneity
presented by a layered medium can be accounted
for by setting the constants of the Jlumped
parameters according to the properties of the

layers at each depth. For an elastic layered
medium, values of the masses and spring
constants are then computed with (11) and (12),

value of the mass
obtained by (7) with
by the value obtained

4)-

replacing p by the local
density, Ev by the value
local parameters and r(z)

by integration over depth of equation

involved in this
is clear that

Some degree of approximation is
straightforward generalization. It

a one-dimensional model will not reproduce in
detail all aspects of phenomena 1involving the 4
types of waves (P,S,R,L) taking place 1in an
elastic layered half-space. To show a limitation
of the model, an infinitely contrasted
heterogeneity 1is considered below, for which a
solution exists. Other types of generalization
(non-elastic medium, visco-elastic medium) are

presented elsewhere (Holeyman
comparison with exact solutions 1is
because they do not exist.

(1984)), but
prevented

The case of the
incompressible basis is

elastic layer resting on an
the most stringent test

to which the proposed model can be subjected.
The massless solution has been determined by
Bycroft (1956) whereas Warburton (1957) has
considered the influence of the mass m vibrating
with the rigid disk. In the case of the elastic
layer of finite thickness H, the model height is
limited to this thickness and its base is fixed

because kH and CR given by (9) and (10) become
infinite.
For the static solution, the displacement As is

obtained from
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Figure 2 s Dynamic Magnification Curves
As dz = £B_ (i
(1+az/R) : l+Ha/R
13
with g = Q/nR2 (13
Expression (13) is compared 1in fig. 3 (dotted
lines for v=0 and v=0.5) with the graphical

representation of the exact solution produced by
Davis (1968) for various values of Poisson"s
ratio. One notes that despite the gross
modelization of the elastic layer, the agreement
with the exact solution 1is good within 10 % for
R/H > 1. On the contrary, for R/H < 0.5,
substantial errors occur due the fact that the
lateral confinement is not effectively
represented in the model

For the dynamic case, an approximate reference
solution is provided by Warburton (1957) with
the assumption of a hyperbolic contact stress
distribution law. Values of the resonance
frequencies and of the amplitude at resonance

are given by this author for v=I1/4 for various
values of the adimensional mass ratio : b =
m/ pR3. The problem that was solved by the
equivalent solid with a fixed basis showed

in approximate concordance
by Warburton, but with

resonance frequencies
with values presented

Figure 3 Deflection on finite elastic layer.
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amplitudes higher than the reference amplitudes.
This different behaviour of the model comes fronm
its inability to dissipate energy 1in the radial
direction and 1in this extreme case, energy could
not be dissipated in the vertical direction
either, due to the fixed end condition. More
reasonable values are to be expected 1if the

contrast of the heterogeneity 1is not infinite.
This example demonstrates however that the
simple model suggested 1is not suited to the

determination of the amplitude around
in elastic finite media.

resonance

Fortunately, this 1is not often the case 1in soil
mechanics as
- the contrast in heterogeneity of
modules of deformation is always
finite,
- the medium to be modelled
half-space,
- energy is

the soil.

is always a

intrinsically dissipated in

Figure 4 a) Model b) Dynamic stress vs.

depth
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Figure 5 a) Force and velocity at various depths
time(s)
Figure 5 b) Displacements at various depths

TRANSITENT NON-LINEAR LOADING

To illustrate this aspect, a hyperbolic law has

been adopted to represent the intrinsic
behaviour of the model in the vertical
direction. The sollicitation 1is provided by a
falling mass as wused 1in the heavy tamping
technique for <compaction of soil masses. The
mass of the cylindrical tamper is 7000 kg

whereas its vradius 1is 0.9 m. The
described by the following

profile is
characteristics,

with ultimate stress used for the
hyperbolic law.

depth of 1.3 2.3 4.1 5.1 5.9 6.5 20
layer [m]

Ev [MPa] 10 10 2 12 5 8 50
quit [MPa] 0.35 0.5 0.1 0.6 0.25 0.4 2.5
The mass 1is dropped from an effective height of
4 m. The computed velocity is the initial condi-
tion, while the remaining degrees of freedom are
initially at rest. The system 1is limited to a
depth of 9 m, such that its base rests in the
last layer considered (see fig. 4a).

The results of such a computation are
illustrated by the following diagrams

- velocity and force signals at various

levels (fig. 5a)
- displacement signals at various levels
(fig. 5b)
- maximum transient stress as a function
of depth (fig. 4b)
The first signals are relevant for the asses-

sment of the displacements and frequencies

involved in waves transmitted to neighbouring
structures. The second ones are useful for the
prediction of the volume of the craters and the

last one can be interpreted as
dation pressure when estimating
after treatment of the ground.

a preconsoli-
settlements

CONCLUSIONS

The suggested one-dimensional model can

reproduce faithfully the behaviour of a rigid
circular foundation resting on an elastic
homogeneous half space. The agreement with
Lysmerls analog is obtained from a rational
formulation of the boundary conditions of the
model. This model 1is apt to take into account
non homogeneities of a horizontally layered
medium and non-linearities. The example of the

illustrates
resonance.

elastic layer of a finite thickness
the limitation of the model around

Since damping 1is intrinsically provided by
soils, this model represents a good aproximation
for the field of soil mechanics, specially for
transient signals, as illustrated by a sample
problem relating to heavy tamping.
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