MODELLING OF DYNAMIC BEHAVIOUR
AT THE PILE BASE
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1. INTRODUCTION

The base resistance acting during pile driving 1s not yet very Vet
understood. In the model proposed by E. Smith (1960) for wave eq“&ti
analyses, this resistance 1is locally represented by a single degre,
freedom system with the following three parameters : ultimate "Star;i
resistance, quake and damping coefficient. Whereas the ultimate ba#
resistance can be related to in-situ tests or other pile design concepy
the quake and in particular the damping coefficient are rather subjeCtin
chosen. Correlations do exist between these two parameters and other 85
properties but the scatter 1s very large.

In this paper an attempt is made to choose the relevant soil parameterg on
rational basis, consisting of the following steps : :

- examine the problem under static loading conditions to define a SPring
constant,

- examine the problem under harmonic loading,

- generalize the solution to the case of large strains.

The important advantage of this approach is that each chosen parameter has,
physical meaning and can be determined experimentally or by other rationg]
methods. 1

2. SEPARATION OF BASE AND SHAFT RESISTANCES

The analysis of the total pile resistance during driving is subdivided intg
the base resistance and the shaft resistance. It is therefore assumed that
they can be examined independently, provided local forces and geometrical
conditions are taken into account. The model which is extended here has
been 1initially suggested by Randolph and Wroth (1978) for the statle
analysis of piles in elastic media. These authors visualize the behaviour .
the medium by separating it into two parts (Eig. 1) :

- a half-space, taking care of the base resistance,
— a layer of depth D, taking care of the friction.

The cylindrical pile is also defined by 1its radius, R, whereas the behaviou
of the elastic medium is governed by its shear modulus G (or its Young's
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E) and Poisson's ratio v.
r focuses in particular on the pile base resistance, as the

pape
o ¢ the shaft resistance has been presented elsewhere (Holeyman,

s ©

CNEAR BEHAVIDUR OF THE BASE RESISTANCE
L onamic behaviour of a circular footing resting on a homogeneous elastic
5‘naée (cf fig- 2) has been investigated previously. In particular,

(1965) has found that a single degree of freedom system can
cely grprodue the harmonic behaviour of a rigid footing subjected to
g Loac tue- This so called "Lysmer analog"” is governed by the
1owing equation:

2 e} 4 GR
+2_'i_R__.JpG ot u=Q (1)
1-v ot 1-v

. vertical displacement of the rigid footing
: time

mass of the footing

: mass density of the medium

; vertical force acting on the footing.

o o® B & c

; analog has brought a simplification in the understanding of the
¢ behaviour of a rigid footing. 1Im equasion (1) the static stiffness
GR -

and the damping coefficient C T vpG are defined

.
iingly-

: Uncoupled model of shaft Figure 2 : Circular footing on top
and sand base resistance. of elastic half-space.

e latter ig the expression of the impedance of the half-space respective
the speed of the footing and is referred to as the "geometrical damping”.
pends only on the mass and elasticity constants of the soil and on the
try of the problem.



Due to its simplicity, Lysmer's analog cannot be readily extended to 4 e
homogeneous half-space, nor to a non-linear medium. In order to ineyy '_
essential factors, such as heterogeneity and non-linearity, it hag __W'
necessary to locally model the soil behaviour. The model presenteq hel
uses the concept of the equivalent solid : below the footing, the half-.spa
is replaced by a solid of finite lateral extent (fig. 3) whose 1ol
boundary has to obey certain conditions.

Only the vertical mode of deformation of the axisymmetric soliqg
considered and the parameters defining its shape and behaviour were dete,
mined by Holeyman (1985) taking into account the static behaviour and 1%
impedance of the solid. The enforcement of these conditions requiresg py
the equivalent solid is a truncated cone, having the same mass density
the soil medium and resting on a spring-dashpot (Lysmer's analog). 1

The modulus of elasticity of the solid in the vertical direction E
defined by :

E = _.G—2 (2)
0.85 (1 - v)

whereas the radius r of the equivalent solid is defined as a function of

depth z by :
1=
r{(z) =R+ ——' =z (3)
v/ 0.85

The vertical extent of the solid can be chosen at any value H, provided thg
the base rests on a single degree of freedom system defined by its spriy
constant ‘ﬁ.[ and its damping coefficient CH H

2
4 Gr 3.4
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k, = (4) and B = (3)
L H 1= v VoG

It is remarkable that the simple shape of this solid is solely determined by
the value of Poisson's ratio v. In spite of its simplicity,.the agreemen
with Lysmer's analog is excellent in terms of the magnification factor M as
functions of the non-dimensional frequency ag for various values of the mas

parameter Bz, cf fig. 4.
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—~LINEAR BEHAVIOUR OF THE BASE RESISTANCE

st advantage of such a model is that it can be easily discretized
~ lumped parameters which are determined on the basis of 1local
ies at each depth. Another advantage is that the intrinsic behaviour
golid in the vertical direction can be more sophisticated than the
- elastic law. The hyperbolic law (Kondner, 1963) in particular has
ged because of its simple mathematical formulation and because it can
[ finad by only two parameters : the ultimate strength and the initial
s of deformation. It can be expressed in a non-dimensional form :

i
1-n

(6)

: mobilization ratio defined by n = q/qr, where (7)
q ¢ vertical stress at the base

a G ultimate strength at the base

strain

reference strain (Hardin & Drnevich, 1972) defined as :

¢ =_° , where E, : initial tangent modulus. (8)
) E; i



For load reversal, as occurring during pile driving, the unloading Paty
governed by the initial tangent modulus, thus assuming loss of energy, i
hysteretic behaviour leads to the damping of the movement of a free SS’at
which is termed hysteretic damping. This damping due to the nature of
intrinsic behaviour law 1s not related to the rate of loading (velocity)._
is solely dependent on the stress path. At the lower end of the Equinl
solid, the stress level 1Is so small that for practical purposes the med:
below can be considered as linear elastic and can be replaced by a Spry i

dashpot.

Viscosity effects can alsc be incorporated similar to the notion of damu
as proposed by Smith (1960). To respect the elementary formulation qf
discretized model, the deformation behaviour can be expressed by :

de
¢ = Be + E' s (9)
with : ,g_i. unit deformation velocity or strain rate

E' modulus of viscosity

With the wviscoelastic model described by equation (9), the energy g
during a full loading cycle is dependent on the loading and unloading g,
The hysteresis loop is defined by this velocity difference and doeg
depend on the stress path as such. The damping associated with ,
behaviour is termed viscous damping, it is intrinsically generated.

Extensive experiments have been conducted concerning rate effects on gg
strength. Starting from very low to wvery high rates of deforman
Holeyman (1984a) has surveyed the literature with respect to rheolog_q
studies, quasi-static analyses, constant rate of penetration tests, load
tests, pile driving tests, low velocity and high velocity projectile -impa,f
etc. No general conclusions could be found : at best one can use the
which is the most appropriate to the velocity range at hand. These exper
iments yield the ultimate failure load obtained at some velocity of loadi
speed, which must not be confused with viscous damping as expressed '_;
equation (9) and which can only be determined in a large strain test.
the viscosity effect of water may play a role, though neither tests ind
sands lead to consistent conclusions. However, some experimental dat
indicate a strong non-linear effect expressed by a "resistance damping la
of the type : (Gibson and Coyle, 1968, Heerema ,1979, 1981, Litkouhi &

Poskitt, 1980)

" N
= v 0)
qr,d qr’s(].'l-.l'v ) (10)

with : q : "static"” strength at the base
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: velocity
. "damping” coefficient

St empirical exponent, usually close to 0.2

4 the sensitivity for very low loading rates, this relation has been

4 as follows :
e a+ v0'%y/1.46 (11)
E 9

qrefdefined as the strength computed at a reference velocity 0.02 m/s.
Er

,swnr_aneous force in the soll elements below the base is computed by
e the static resistance, as given by the hyperbolic law (eq. 6),

jon of
t 'Pain history and by the intrinsic viscous additional term, as given by

9, taking into account the viscosity modulus and the rate of
‘tioﬁ- The displacements are then computed by the explicit integra-
the equations of motion and therefore take into account the effects
seomer.rical damping, as in a traditional wave equation anmalysis. The
aneous total force is then limited to the value given by the velocity
dent ultimate resistance cf. equation (11).

Ehe suggested model, combining all these features it is now possible to
) e experimentally from a driving test the various parameters and to
i « the relative importance of the different types of "damping”

ssteretic damping, modelled by the hyperbolic law (eq. 6),

scous damping, modelled by the modulus of viscosity (eq. 9),

trical damping, modelled by the geometry, the masses and the tangent
slus (equations 2 to 5),

tance damping, modelled by the non-linear velocity dependent law (eq.

be noted that the parameters involved, along with the ultimate
and the initial tangent modulus can be assessed by conventional
ratory or in-situ tests.

D EXPERIMENTS

1l piles driven for an experimental pile test programme in Belgium were
o analyze dynamic pile behaviour. ' The steel tubes with an outside
r of 0,6 m and provided with a heavy bottom plate were driven into a
, Saturated tertiary sand layer, as shown by the static cone
tion test (CPT) in figure 5. Pile instrumentation was particularly
ve close to the base plate and consisted of accelerometers, strain
 and a velocity transducer. This velocity transducer was installed as
ed by Holeyman (1984a) and was found to give more reliable informa-
an conventional accelerometers, as integration problems could thus be
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Figure 5 : Diagram of cone resistance (CPT) and pile driving resistance.

The signals recorded at the base during driving with a Diesel hammer (g,
5700) into the dense sand are shown in fig. 6 : force and velocity ¢
impedance Z of the pile as functions of time.

The parameters of the model enabling the reproduction of the records
phenomena were determined by an iterative trial and error method, using op
of the measurements (velocity or force) as an imposed conditionm,
comparing the measured values (force or velocity) with the computed or
using the modelled equivalent solid concept. These analyses were conducte
using a wave-equation code enabling computation of displacements at variom
levels in the pile and in the soil below the base, taking into account th
inertia effects of the heavy bottom plate.

To reduce the numberical efforts for sands, a value of Poisson's ratio equé
to 1/3 was chosen. It became obvious that the value of the modulus 8
viscosity had to be chosen very small (0.02 MPa/s.). Besides the resistant
damping, the two major parameters defining the resistance at the base el
the reference ultimate base resistance : 9., and the reference straift
defined by equation (8).
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Evo jpportant parameters were defined first by introducing J = 0 in
(9)- A number of more or less equivalent solutions could be found.
jeular, for d, = 12 MPa and ¢_ = 0.032, a very good match was

4 petween the computed and the measured force diagrams cf. fig. 6.
3 paximum displacement (12 mm), the mobilized unit base resistance was
As this maximum displacement occurs at zero velocity, other
_”;mn curves passing through this experimental point would be able to
. suitable matches of the curves. This was the best fit found by

ot 4 error. Three of the corresponding mobilization curves of the
s:sae resistance of this base are shown in fig. 7 as a function of the
displacement. They pass through the same point around q = 8.1 MPa for
2 aoe They are characterized by the following parameters : q,. = 10 MPa
. = 0.023, 9. = 12 MPa with € = 0.032 and

4 q-" = 14 MPa with £ = 0.040.
Er

Force P"NJ

/Fmeos ured

A computed

2 * Time (ms)

re 6 : Measured and matched computed force diagrams from field test data

in sand.

mobilized stress range , these curves are very similar but beyond,
yleld different ultimate values. The deduction of the ultimate bearing
y is thus a matter of extrapolation, just as 1s the case in an
ete static pile load test, i.e. one has to estimate the ultimate
ure load.
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Figure 7 : Mobilization curves of the static base resistance.

The last factor to be addressed is the significance of the veloceyy,
dependency of the ultimate resistance. Various coefficients for J wey
tried, without significant effect on the calculated response curves. Thy
can be explained by the fact that during mobilization of the topy
compression force in any soil element, the intrinsic viscous and geometricy
dampings are not sufficiently mobilized for the upper bound set by eq. (1),
Indeed, on the one hand when the velocity is high, the statically mobilize
force 1s far from 1its ultimate value, whereas on the other hand
statically mobilized force 1s close to failure while the deformation rat
is very small and decreases to zero. For this effect to be felt, the pile
needs to undergo large sets at high loading rates, which is only the cas
for very weak soils or for piles with a small base. Thus under norml
driving conditions and specially at the end of driving where the transient
maximum displacements at the base are small, the velocity dependency of th
ultimate resistance should not be of significance. However, the signiff
cance of velocity dependency of the modulus of deformation needs to
further investigated.

When comparing the various matching curves, the one corresponding tog
= 12 MPa and € = 0.032 was selected as the best estimate. The ulti
static resistance during driving is somewhat smaller than the one compulf
according to De Beer's method (1971-1972) : 14.3 MPa. Further analy:
concerning the skin friction (Holeyman (1984b) using dynamic pile test dal



4 at the top of the pile suggest very high values (tf = 0.2 MPa)
e ¢he lower end of the pile shaft. This seems to give satisfactory
¢ on the total resistance, and one can consider that the dynamic

E nce is the one acting at the very base and probably does not

count the stress level induced by the shaft frictionm corre-

he static solution. These deductions were used to compute the

i esista
~ qato 2¢
’ to t
eflecti‘m curve under static loading. The comparison of this curve

?he one obtained from a static loading test carried to failure suggests
Fhe static friction after driving was about 50 % higher than the one
ned from the driving test. This value was confirmed by a pull out

ehich reinforces the validity of the assumptions made for the base

jgtance:

4ar deductions were made for other piles and in particular for closed
anki steel tubes driven into dense sand (Holeyman, 1984a), leading to
f 5‘110"11"3 empirical relationship between the initial tangent modulus and
5 cone resistance q obtained from CPT tests :

= 15 o 20 q, for 10<qc<30 MPa (12)

, yalues tend to be slightly in excess (30 %Z) of those obtained from
Proposed by Hardin and Drnevich (1972) for earthquake engineering
V_e'acions .

NCLUSION

cational analysis procedure is proposed medelling the dynamic non-linear
four of the base resistance of piles during driving. Based on
-;?. able soll data and in particular on the results of CPT tests, it is
ible to assess the static load-deformation characteristics below the
ase and an additional resistance term attributed to loading rate. The
ed model which replaces the half-space below the base by a truncated
allows separation of geometrical damping, hysteretic damping and
ys intrinsic damping and resistance damping. Experimental data
t that under normal driving conditions only the geometrical and the
retic damping are of significance. From a pile driving test, the
ing curve up to the maximum transient displacement can be determined
ly, while the ultimate bearing capacity can only be estimated by
rapolation.
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ical one-dimensional model is presented to simulate the dynamic
iguf of the soil below the base of a pile during driving. TIn this
Jed approach, the soil medium is replaced by a truncated cone resting
cingle degree of freedom system. After checking the agreement between
_:-Lscrete model and the homogeneous elastic medium, the behaviour of a
i‘inear medium 1s investigated. The resulting discrete model can be
11y incorporated into a wave equation model, since only additional soil
:5”7 have to be added below the base of the pile.
dvantage of such a model is the possibility to separate the geometrical
ng Erom the viscous and hysteretic damping. Tt is demonstrated that
ce of such a model reproduces accurately the behaviour of a pile base,
ofirmed by field data using transducers located at the toe of a closed-
steel pile, driven into a dense sand. The model has also been success-
used in more classic analyses of force and velocity measured at the
of plles.



