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ABSTRACT: This paper describes a model calculating the penetration speed of a pile during its vibratory 
driving and the vibrations induced around it. The model is called VIPERE, for Vibratory PEnetration REsis
tance. 
The model actually implements hypoplastic constitutive behaviour into a geometric model suggested by 
Holeyman (1994). The model VIPERE considers the pile as a rigid body and simulates the soil by a 1D radial 
discretisation. The soil behaviour is assumed to be hypoplastic and modeled using the Bauer ( 1996) and 
Gudehus (1996) constitutive law. The penetration speed and the wave propagation around the pile are evalu
ated by integrating the equation of movement. 
The paper describes the model by specifying the assumptions relative to the pile and the soil behaviour, the 
equations used to evaluate the soil resistance along the pile shaft and at the pile base, and finally the procedure 
of integrating the motion equations. Typical simulations of pile driving are presented and discussed. 

1 INTRODUCTION 

The VIPERE model calculates the penetration speed 
of a pile or sheet-pile at a given depth during a vibra
tory driving. 

The model considers the pile as a rigid body and 
represents the soil with a cylindrical discretisation of 
rings. The interaction between these rings is de
scribed by a hypoplastic constitutive law (Fig. 1). 

To calculate the displacement of the pile as well 
as the wave propagation around the vibrating profile, 
the model integrates the equation of motion step by 
step. The acceleration is calculated at each time step, 
based on the balance of the forces acting on the pi le 
and on each ground element considered in the dis
cretisation. 

The forces acting on the pile are: 
> the vibrating force induced by the vibrator (= 

me.w2.sin(ffit) where me is the eccentric moment 
and ffi is the angular frequency(= 2.n.Freq)), 

> the static weight placed above the vibrator and 
isolated from it by shock absorbers(= M,atal . g), 

> the friction resistance along the shaft of the pile 
Fshaft, 

> the toe resistance F,ae and 
> the inertial force induced by the movement of the 

mass of the pile and the vibrator. 
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The forces acting on each ground element of the 
discretisation are, in addition to the inertial force, the 
forces of friction generated on the internal and ex
ternal faces by the movement of the close elements. 
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Fig. I: Vibrodriving model. 
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During simulations of the vibratory driving of 
sheet-piles, the model does not take into account the 
influence of the sheet-pile wall formed by the other 
already installed sheet-piles neither the friction resis
tance generated at the interlock with the neighbour 
sheet-piles. 

The scope of this paper is to describe the main as
sumptions considered in the VIPERE model and to 
show how the hypoplastic constitutive equation is 
implemented into the model. The integration proce
dure is also presented. Finally, the model perform
ances are discussed through the analysis of simula
tion results. 

2 GEOMETRIC MODEL 

This model borrows the geometric configuration of 
the HYPERVIB II model developed by Holeyman 
(1994, 1996). 

The geometric shape (Fig. 2 a) assumes the pile 
or sheet-pile and the surrounding soil have cylindri
cal symmetry. Since the shape of the pile is not nec
essary cylindrical, the equivalent radius of the pile is 
obtained from perimeter considerations. The soil is 
assumed to be a disk (Fig. 2 b) with a thickness that 
slightly increases in a linear way with the radius 
(Fig. 2). This increase tends to simulate the geomet-
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rical damping provided by vertical diffusion of 
waves around the profile. 

~h= a .M (Eq. 1) 

where r is radius and a is the coefficient of disper
sion(= 0.03 - Holeyman, 1996) 

In order to simulate the wave propagation, the soil 
is discretised into a set of concentric rings possess
ing individual mass and transmitting forces to their 
neighbouring ones (Fig. 2 c ). The base resistance of 
each element is supposed to balance the gravity 
force . The vertical shear stress 'C between two rings 
is calculated based on the relative displacement of 
each ring using the hypoplastic model (Gudehus, 
1996; Bauer, 1996). The radial discretisation is char
acterised by the number of rings (Nr) and the maxi
mum radius (Rmax). 

The boundary condition of the cylindrical discre
tisation is selected in such way that arriving waves 
are absorbed by that l:forder (Novak, 1978). How
ever, considering Novak's assumptions, this border 
will absorb the incident wave only if the wave in
duces a displacement of the soil element that stays in 
the linear elastic domain of the soil. In order to re
spect that condition, the number of soil elements and 
the maximum radius must be large enough to ensure 
the wave is damped enough at the boundary and is in 
the elastic domain. 
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Spring stifness = let of · relative displacement of the masses 
- stress state of the soil 

Fig. 2 (a,b,c):Geometric model. (After Holeyrnan, 1996) 
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3 CONSTITUTIVE LAW FOR SHAFT 
RESISTANCE 

3. !Assumptions 

The model considers each soil element as purely 
sheared (Fig. 3). A shear displacement is imposed 
between the internal and external shaft of the soil 
element. Neither axial nor radial normal strains are 
permitted along these boundaries. The non-vanishing 
strain of the strain tensor is the shear strain 'Yrz ('Yrz 
t:0; Er= Ee= Ez = 0). 

The soil is assumed to be fully saturated and the 
frequency of the vibrator is supposed high enough to 
prevent excess pore water dissipation during the vi
bratory driving. Therefore, the model considers the 
behaviour of the soil is undrained (i.e. no volume 
change; ~e = (1 +e).(Er+Ee+Ez) = 0). 

It is assumed that there is no variation of the 
stresses and strains along the z axis ca( .. )/az = 0). 
The radial normal stress and the shear stress do not 
change as a function of the depth. 

Based on these assumptions, Fig. 4 shows the 
stresses and strains distribution at each soil element 
interface. The shear strain 'Yrz is calculated based on 
the relative displacements of these elements assum
ing a linear distribution of the displacement. 

The resulting stress tensor Ts and strain tensor 
D s can be written as follow 1

: 

[

-err' 0 'frz] 
Ts= 0 -ere' 0 

'frz O -erz' [ 

0 0 yzr] 
D s = 0 0 0 (Eq. 2) 

Yrz O 0 

A 
~ 
~-- IA' 
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Fig. 3: Simple shearing in axisymetry 

1 For the hypoplastic constitutive equation, the com
pressive stresses and shorttening strains are defined negative in 
accordance to the convention in continuum mechanics. Only 

the scalar of the effective mean stress P' ( = - tr(Ts).½) is de

fined positive in compression. 
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3.2Hypoplastic model in cylindrical s j 
shearing 

The constitutive relationship used to calculate the 
shear stress along the shaft of the different elements 
is the hypoplastic model (Kolymbas, 2000, Gudehus, 
1996, Bauer, 1996). This constitutive law evaluates 
the stress rate tensor Ts as a function of the current 
stress state tensor Ts and the strain rate tensor :Os 
based on the following incremental equation: 

Ts = fs .lat.D s +Ts .t~Ts.D s)+fct.a1 .{Ts+Tt).IID sllJ 

(Eq. 3) 

a, is a dimensionless scalar depending of the fric
tion angle <p' of the soil, Ts =T,/tr(T,) is the granu
lar stress ratio tensor, T's =Ts-½. l is the deviatoric 
part of Ts , fs and fct are scalars depending of the 
mean stress P's and the void ratio e. 

Based on notations and assumptions of paragraph 
3.1, equation 3 can be simplified and can be ex
pressed in its incremental shape into the following 
components of the stress state tensor: 

+fd .J2.a,. ( 2 .'trz ): 
. (Jr '+<J 8 '+<J z I 

A , f IA I[ 2.Trz·<J,' ._j_. ) 
u(Jr= , .uyr9· ( )2 .Sll:J\f/1\Yrz 

0, '+0 8 '+0z' 

f 
r;:;
2 

(5.0,'-00'-crz')] 
+ ct • -v L · a1 · ( ) 3. (Jr '+<J8 '+<Jz II 

'-f I 1[ 2.--rrzae' ._j_. ) 
~(J8 - s · ~Yr9· ( )2 . Sll:J\f/1\Yrz 

(Jr '+0 0 '+<Jz 1 

f r;:;2 .(5.<J8 '-(Jr '-0 z')] 
+ ct • -v L · a1 · ( ) 3. (Jr '+<J8 '+<J z I 

A , f IA I[ 2 -"trz(Jz' ,_j_. ) 
u(J z = s • L.l.Yr9· ( )2 · Sll:J\f/1\Yrz 

(J r '+<J8 '+<Jz I 

f r;:;2 .(5 .crz'-crr'-00')] 
+ ct • -v L · at · ( ) 

3. (J r '+00 '+<J z' 

(Eq. 4) 

The factor fct controls the transition to the critical 
state. The factor fs takes into account the increase of 
stiffness consecutive to an increase of the mean 
stress. These factors are function of the soil state de
fined by the void ratio e and the effective mean 
stress P'(=( cr/+cr0 '+crz')/3) and of seven constitutive 
parameters (eco, eiO, ecto, a,~' hs and n). These pa
rameters define the relationship between the mini
mum, critical and maximum void ratios and the 
means stress. 



Fig. 4: Stress state assumed at the interface between 2 
soil elements. 

More detailed description of these parameters 
can be obtained in Bauer (1996), Gudehus (1996) or 
Vanden Berghe (2001). 

4 CONSTITUTIVE LAW FOR TOE 
RESISTANCE 

4. !Assumptions 

In order to calculate the toe resistance of the pile 
during the vibratory driving, the VIPERE model 
represents the soil under the pile by a cylinder (Fig. 
5). 

The section of the cylinder is equal to the section 
of the pile and its height is equal to 70% of the pile 
diameter. The soil at the pile base and the pile are 
supposed to stay permanently in contact. The model 
does not take into account the advent of gaps be
tween the pile base and the soil as experimentally 
observed (Gudmani, 1997; Holeyman & al., 1998). 

The determination of the height of the cylinder 
was suggested by the simplified semi-empirical 
equation calculating the immediate settlement of a 
foundation (Eq 5). This equation was developed 
based on the Boussinesq theory (Boussinesq -
1885), the theory of elasticity and experimental data. 
The influence coefficient Ip depends principally of 
the shape of the foundation (Steinbrenner - 1934). 
As a first approximation, the value of this coefficient 
can be taken equal to 0.7 for a solid vibratory driven 
pile. 

1-v2 

s=q.B.lp.~ (Eq. 5) 

Where s is the foundation settlement, q is uniform 
contact pressure, B is the foundation width, Ip is the 
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influence coefficient, E is the soil stiffness and v is 
the Poisson's ratio of soil 

The behaviour of the soil cylinder at the pile toe 
is assumed to be hypoplastic and the element is sup
posed to be loaded in triaxial conditions (i.e. vertical 
stresses crz' and radial stresses crr' are principal). 

As for the shaft resistance, the frequency of the 
cyclic loading is assumed to be high enough to con
sider that the excess pore pressure cannot be dissi
pated during the driving: the soil behaviour is as
sumed to be undrained (~e=O). The pore pressure u 
is calculated based on the assumption that the total 
mean stress P (=( cr2+2.crr)/3) of the considered soil 
element stays constant (~u=P' -Po'). 

The resulting toe resistance Fioe is calculated 
based on the total axial stress acting on the pile base 
using equation 6: 

Roe=(crz'+u )Api1e (Eq. 6) 

where crz' is the effective vertical stress, u is the 
pore pressure and Apile is the pile section. 

4.2Hypoplastic model in triaxial shea1 

Similarly to the shaft resista~ce, the constitutive 
relationship used to calculate the stresses at the pile 
base is the hypoplastic model defined with Eq 3. 

Based on the assumptions presented in the previ
ous paragraph, the stress tensor and the strain rate 
tensor can be simplified as follow: 

[

-a' 

T, = ~' D,=[-1&,_fi&, ~ l 
0 0 M z 

0 

0 

(Eq. 7) 

The vertical normal strain £2 is calculated by di
viding the pile displacement up by the height of the 
soil element considered under the pile (=0.7.0piie)-

Fig. 5: Toe resistance model 



Using these tensors, the stress rate at the pile base 
can be expressed as a function of the deviator q 
(=crz' -o/) and the effective mean stress P' 
(=( crz'+2.crr')/3): 

flP'=fs -lflc:11.½-[31,. sicJ~c:1)+f<l .-Jf .a,] 

8q-f, l8e,i[( fa/ +C~.J} sig{me,) 

+ fct .-16 .a, .
3
~,] 

(Eq. 8) 

The density factor fct and stiffness factors fs are 
functions of only the effective mean stress P' and the 
void ratio e. 

5 MOTION EQUATION AND INTEGRATION 

5.lPile Equilibrium 

Fig. 6 shows the different forces acting on the pile. 
The vibrator induces a force resulting from the grav
ity force and the cyclic force induced by the vibra
tion of eccentric masses. The soil reaction is divided 
into the resistance along the shaft and the toe resis
tance. The shaft and toe resistances are calculated 
using the hypoplastic model based on the relative 
displacement between the pile and the soil elements 
and the stress state in these elements. 

The acceleration of the pile results from the un
balance between these forces (Eq. 9) 

.. () Mtot.g + me.a..l2.sin(co.t)-2.n:nh,:ri(t)-Rae 
U p t Mvib 

(Eq. 9) 

where tiµ{ t) is the acceleration of the pile, Mtot is 
the total mass of the vibrator and the pile, Mvib is 
the vibrating mass consisting of the pile, the clamp
ing device and the exciter block, me is the eccen
tric moment, ffi is the angular frequency, r1 is the 
equivalent radius of the pile, h1 is the current pile 
penetration, 'T1 is the shear stress at the interface 
between the pile and the soil and Fioe is the base re
sistance 

5.2 Soil Elements Equilibrium 

Fig. 7 shows forces acting on each soil element 
modelling shaft resistance. The gravity force of the 
element is not taken into account. It is supposed to 
be balanced by the base resistance. The inter-ring re
action is calculated assuming an uniform distribution 
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Fig. 6: forces acting on the pile 

of the shear stress along the internal and external 
shaft of the soil element (Eq 10). 

(Eq. 10) 

where Ti is the inter-ring reaction between the ele
ments i and i-1 , fi is the radius of the interface be
tween elements i and i-1, hi is the mean height of 
elements i and i-1, 'Ti is the shear stress at the inter
face between elements i and i-1 

Based on the inter-ring resistance, the accelera
tion ti(t)i of each ring is calculated using equation 
11 . The displacement of the element is obtained by a 
double integration of this acceleration. 

ti(t).J11-Ti+1 ) 
I Mi (Eq. 11) 

where ti(t) i is the acceleration of the elements i, Ti 
is the inter ring reaction between the elements i and 
i-1 , Ti+! is the inter ring reaction between the ele
ments i+ 1 and i, Mi is the mass of the element i. 

M-•1 

Fig. 7: forces acting on soil elements 



The different steps in the calculation of the dis
placement of the soil elements i at the time step t+~t 
can be summarised as follow : 
>- Based on the relative displacement between the 

considered element and its neighbours, calcula
tion of the shear strain and the shear strain rate at 
each interface of the element; 

>- Based on the current stress state and the shear 
strain rate, calculation of the shear stress at each 
interface using the hypoplastic constitutive 
model; 

>- Calculation of the force acting an each interfaces 
by integration of the shear stress. 

>- Calculation of the acceleration of the considered 
element at the time t 

>- Calculation of the displacement of the element at 
the time t+~t by integration of the motion equa
tion using the central difference method. 

>- Return to the step 1 

6 INTEGRATION PROCEDURE 

Considering the motion equations of the pile and of 
each soil element, the system of Nr+ 1 motion equa
tions of all the system can be developed. This system 
is not linear and cannot be solved by a direct inver
sion procedure. Indeed, the shear stress is calculated 
with the hypoplastic model that is expressed in an 
incremental shape. The model requires an explicit 
method to integrate the calculated acceleration. 

The acceleration is evaluated as a function of the 
displacement using a central finite difference de
scribed as follow: 

"·(t)= Ui(t-M):=2.u{t)+ Ui(t+M) 
U, ~t2 ( Eq. 12) 

The value of the displacements at the time t+~t is 
calculated using Eq 12 where ii{t) is evaluated with 
Eq 9 and 11. 

T bl 1 Md 1 fi a e : o e parameters or s1mu at10ns. 

7 MODEL RESULTS 

This paragraph presents the results calculated by the 
model VIPERE. These results are based on the input 
parameters described in Table 1 and on the model
ling of the pile penetrating a homogenous layer 
down to 12m depth. 

7 . lP i le pe netr a t ion 

7 .1.Eha ft r e s i sta nce 
Along the shaft of the pile, the model VIPERE con
siders the soils condition is cylindrical simple 
sheared. The shear strain-shear stress (y - 't) relation
ship is calculated using the hypoplastic constitutive 
law that takes into account the contractive and dila
tive behaviour of soil. 

During the simulation of the vibratory driving, the 
'trz - Yrz hysteresis loops look like bananas (Fig. 8-a) 
similar to the shape observed during typical labora
tory testing. That result is the consequence of the 2 
phases of dilation and 2 phases of contraction that 
are observed during each cycle (Fig. 8-b ). When the 
shear strain rate changes sign, the soil behaviour be
comes contractive and the shear decreases rapidly 
towards O (section 1-2 on Fig. 8). While the behav
iour is contractive (section 2 -3), the shear stress 
stays low. However, when the soil skeleton is no 
more able to follow the imposed shear strain without 
trying to increase its volume (point 3), the behaviour 
becomes dilative and the resulting shear stress in
creases significantly (section 3-4) until the direction 
of the shearing is inversed. These phenomena are 
also illustrated by the butterfly shape characterising 
the stress path in the P' -q plane (Fig. 8-c ). 

Model Parameters 
Vibrator parameters Eccentric Moment me = 46 kg.m 

Frequency= 33 Hz 
Vibrating Mass of Vibrator= 6700 kg 
Stationary mass of Vibrator= 3500 kg 

Pile Parameters Pile Area = 167 cm2 

Pile Perimeter= 288 cm (diameter = 92cm) 
Pile Length = 12 m 

Soil Parameters <p' = 30° e = 0.60 

Hypoplastic model paramet eco = 0.88 hs = 200 Mpa a = 0.25 
ecto =0.52 n = 0.35 ~ = 1.10 
eio = 1.21 

Integration Parameters Rmax = 100 m 
Number of soil elements = 100 

. ~t = 15.10-6 s 
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Fig. 9: Soil resistance at the pile base during vibratory driving: (a) evolution of the effective normal axial stress, 

(b) evolution of the pore pressure, ( c) stress path. 

7.1.~oe resistance 
The VIPERE model calculates toe resistance based 
on the total axial normal stress applied at the base of 
the pile. The effective axial normal stress cr' 2 toe (Fig. 
9-a) is evaluated with the hypoplastic model assum
ing the pile displacement solicits the soil under the 
toe in a triaxial way. The pore pressure u (Fig. 9-b) 
is deduced from the calculated effective mean stress 
P' assuming that the total mean stress P stays con
stant around the base of pile. During each cycle, 2 
phases of contraction and 2 phases of dilation are 
observed. When the pile moves downwards, the ef
fective normal stress increases dramatically during 
the dilation phase (section 4-1 on Fig. 9-a). When 
the direction of pile displacement changes (point 1 ), 
the effective axial normal stresses decreases rapidly 
to a low constant value (section 1-2) and stays 
around that value during the following contraction 
and dilatation phases (section 2-3-4). In fact, when 
the pile moves upward, the soil behaviour becomes 
active: it is the lateral stress that pushes the soil to
wards the pile base. 

The evolution of the- toe resistance calculated by 
the VIPERE model is quite similar to the model pro
posed by Dierssen (1994). When the pile moves 
downward, the toe resistance stays small during a 
part of the downward displacement whereas it in
creases rapidly when a certain threshold is reached. 
In the VIPERE model, the threshold is crossing from 
the contractive behaviour to the dilative behaviour. 
In the Dierssen model, when the pile moves upward, 
the toe resistance decreases rapidly and is equal to 0. 
In the VIPERE model, the toe resistance is not equal 
to O but is very small depending of the soil. 
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7.1.~enetration speed of the pile 
The evolution of the penetration speed deduced from 
the net penetration of the pile is plotted on Fig. 10. 

Fig. 11 presents the evolution during 3 cycles of 
the different forces acting on the pile. The active 
force of the vibrator is a sinusoid lightly shifted up
wards to take the static weight into account. The re
sisting force is less regular due principally to the dif
ferent phases of dilatancy and contraction of the soil. 
The curve of the resisting force looks symmetric be
cause the pile cross sectional area chosen for this 
simulation is small comparing to the area of the pile 
shaft: the soil resistance is principally applied along 
the pile shaft and the toe resistance is very small 
(around 2.5% of the shaft resistance). 

The acceleration resulting of the unbalance be
tween acting and resisting forces is integrated (Fig. 
12) to calculate the vertical velocity and displace
ment of the pile. 
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Fig. 10: Penetration speed of the pile at different 
depths. 



i 
2000

~~ 
,........ I I I I I I l I I 

i ~200: 
~ 50001.41 1.42 1.43 1.44 1.45 1.4 6 1.47 1.48 1.4 9 1.5 

f~.~~ 
i - 5000 

~ 5000

1

-

5 

I~·~ 
Ql -500 0~--~- ~ - _,__- ~ - ~ - --'---'---'-----' 
0: 1.4 1 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.5 

T ime (s ec) 
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8 CONCLUSIONS 

This paper has presented the VIPERE model calcu
lating the penetration speed of a pile during its vibra
tory driving. More detailed description of this model 
can be found in Vanden Berghe (2001). 

The model implements hypoplastic constitutive 
behaviour into a geometric model suggested by 
Holeyman (1994). The VIPERE model considers the 
pile as a rigid body and simulates the soil by a 1 D 
radial discretisation. The soil behaviour is assumed 
to be hypoplastic and modelled using the Bauer 
(1996) and Gudehus (1996) constitutive law. The 
penetration speed are evaluated by integrating the 
equation of movement. 
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