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Abstract Non-Fickian solute transport models were investigated in the case of 
mildly heterogeneous porous media using a synthetic two-dimensional ln(K) 
field, generated randomly. Transport was fully solved using MT3D and 
exhibited scale-dependence. Monte Carlo simulations were used to quantify 
uncertainty in the absence of a priori data. Then, inverse and direct modelling 
using the continuous time random walk approach and the fractional 
advection–dispersion equation were performed in order to assess the upscaling 
capacities of these models. A sensitive improvement could be observed 
compared to the classical advection–dispersion model. 
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INTRODUCTION 

The scale-effect in dispersion of solute plumes migrating in aquifers was identified 
about 20 years ago (see e.g. Pickens & Grisak, 1981) and is still not fully resolved. 
Stochastic theories have greatly contributed to the understanding of the influence of 
soil heterogeneity on apparent dispersivities (Gelhar, 1993, and references therein), but 
their practical application remains painstaking as they require a geostatistical charac-
terization of the aquifer. Recently, new transport models have emerged, some of them 
being a direct extension of the classical advection–dispersion equation. However, these 
models make use of unusual mathematical concepts, such as fractional derivatives, 
which might explain why still only a few practicians exploit them. 
 This paper shows, using a two-dimensional synthetic example, that even in the 
case of a weakly heterogeneous medium, the classical Fickian model fails to correctly 
scale up transport while non-Fickian transport models make an improved deterministic 
prediction of breakthrough curves (BTC) at the macroscale. Before presenting the 
reference example to be used, the basics of the continuous time random walk (CTRW) 
theory are presented, as well as the fractional advection–dispersion equation (FADE). 

THEORETICAL BACKGROUND 

In a heterogeneous medium, moving particles travel along different paths and at 
varying velocities. This kind of transport can be represented using a coupled time–
space probability density function (PDF) that describes particle transitions in time and 
in space. In the classical Fickian transport model, this PDF is the Gaussian distribution. 
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In the CTRW and the FADE frameworks, the PDF is a more general distribution called 
the Lévy distribution (Benson et al., 2000b), characterized by a parameter β ranging 
from 0 to 2. The importance of the distribution tail increases when β decreases, leading 
its second-order moment (and even, in the case β < 1, its first-order moment) to 
become infinite. This allows dissolved particles to travel over a much wider range of 
velocities and allows the variance of a particle cloud to grow nonlinearly in time, 
which might be closer to reality in the case of a heterogeneous medium. The Gaussian 
distribution is a particular Lévy distribution corresponding to β = 2. 

Two basic approaches can be followed to describe the random displacement of a 
particle in a porous media. First, one could assume that the path of the particle can be 
divided into equidistant transitions in the mean flow direction and determine the 
distribution ψ(t) of transition durations. Assuming ψ(t) is a Lévy distribution 
characterized by βt, Margolin & Berkowitz (2004) have developed a set of analytical 
expressions to compute concentration distributions in time and in space for various 
injection conditions. They have also developed inverse modelling tools to infer 
transport parameters from experimental data; they are used in this study. 
 In the second approach, the path of a moving particle is divided into transitions of 
equal duration and the distribution of travel distances ψ(x) is a Lévy distribution 
(called in this case a Lévy flight) characterized by βx. This approach, however, 
implicitly assumes that the first moment of the PDF is finite (i.e. that the mean velocity 
of the particle cloud can be computed) and is valid only in the case 1 < βx < 2. Starting 
from this assumption, Benson et al. (2000b) ended up with a one-dimensional 
extended transport equation of the form: 
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where C is the concentration, t is the time, x is the longitudinal position, v is the mean 
migration velocity, α is a skewness parameter and D%  is comparable to the classical 
dispersion coefficient but is found to be scale-independent. Equation (1) is usually 
referred to as the fractional advection–dispersion equation, as fractional βx-order 
derivatives appear. This model is a direct extension of the classical Fickian model as 
setting α to 0 and βx to 2 yields the advection–dispersion equation. 

One may wonder which approach is better. Some authors argue that Lévy flight 
formulations are inadequate in some physical applications (Berkowitz et al., 2002). 
However, both approaches have already been successfully applied to physical 
experiments at the laboratory scale as well as in the field (Benson et al., 2000a; 
Berkowitz et al., 2001). 
 
 
SYNTHETIC REFERENCE EXAMPLE 
 
The two-dimensional synthetic example used for the purpose of this study is based on 
an experimental setup consisting of an 80-cm wide and 200-cm long sandbox (Frippiat 
et al., 2004). A mean gradient of 10% was applied to the confined sample so that a 
one-dimensional flow in the longitudinal direction was simulated. In practice, fixed-
head conditions of 2.2 and 2 m were imposed, respectively, on the upstream and the 
downstream boundaries. Other boundary conditions are illustrated in Fig. 1. 
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Fig. 1 Two-dimensional K field used as reference example (K in m s-1). 
 

  

(b) (a) 

 Fig. 2 Apparent transport parameters inferred from transversely averaged BTC. 

One realization of a randomly heterogeneous ln(K) field was generated using a 
Matlab® routine (available at http://matlabdb.mathematik.uni-stuttgart.de) (Fig. 1), 
assuming a mean of −7.759 (K being expressed in m s-1) and a Gaussian isotropic 
correlation function characterized by a correlation length of 0.1 m and a variance of 
0.076. These values are based on measurements performed on real Brusselean sand 
samples manually compacted in the experimental tank. The variance is very low, but is 
nevertheless sufficient for the apparent dispersivity to exhibit a scale effect. 

Flow was solved using MODFLOW (Harbaugh et al., 2000) under steady-state 
conditions. The numerical domain is discretized in 200 × 80 cells of 1 × 1 cm. 
Assuming a zero initial concentration and a homogeneous step injection through the 
whole inlet boundary, transport was solved using MT3D (Zheng, 1990) for 30 000 s. 
Local longitudinal and transversal dispersivities were set equal to the numerical grid 
(αL = αT = 1 cm). Results were stored with a time resolution of 300 s, leading to 
concentration curves composed of 101 synthetic concentration data. Concentrations 
were averaged transversely (along the y-direction) and each of the 200 average BTC 
(for x = 1 to x = 200 cm) was analysed using standard curve-fitting tools to obtain 
apparent transport parameters (Fig. 2(a) and (b)). Despite a low variance of the ln(K) 
field, a scale effect clearly appears, leading to macroscale values of dispersivity of 
about twice the local value. 
 
 
MONTE CARLO SIMULATIONS 
 
In a second stage of the analysis, 2500 unconditional equiprobable ln(K) fields were 
randomly generated, similarly to the reference example shown on Fig. 1. Flow and 
transport were solved for each of these realizations and ensemble-statistics of 
concentration were computed (ensemble-mean and ensemble-standard deviation of 
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concentration at each location (x,y) of the flow domain). The aim of this procedure is 
basically to assess the level of uncertainty associated with the reference example used 
throughout this study, in order to establish whether non-Fickian models contribute to 
reduce this uncertainty or not. As an example, Fig. 3(a) shows that the BTC simulated 
at the centre of the model (x = 100 cm, y = 40 cm) for the reference case falls by 
chance within the one-standard-deviation confidence interval.  
 As the 2500 equiprobable ln(K) fields where generated unconditionally (i.e. 
without incorporating any additional information on the aquifer), the one-standard-
deviation confidence interval is found to be relatively wide, reflecting a relatively high 
uncertainty. One could have assessed the benefit of incorporating known local K 
values in the modelling process (i.e. to generate conditional realizations of the ln(K) 
field) to reduce uncertainty in BTC prediction, but that was beyond the scope of this 
paper. It can also be noted in Fig. 3(a) that the ensemble-mean BTC exhibits a larger 
apparent dispersivity, resulting from the combined uncertainty on the mean front 
position and on front spreading (Dagan, 1990). 

 

  

(a) (b) 

Fig. 3 (a) Confidence interval for the local BTC at x = 1 m and y = 0.4 m, and  
(b) Spatial development of macrodispersivity. 

 

 
 In addition, it was checked whether one could recover the analytical results of the 
stochastic theories for macrodispersivity. Figure 3(b) shows the apparent dispersivity 
of the ensemble-mean concentration distribution compared to the analytical solution 
proposed by Hsu (2003). The finite size of the flow domain and the curve-fitting 
method used to obtain transport parameters could account for the discrepancy. 
 
 
APPLICATION OF THE CTRW FORMALISM 
 
Each of the 200 average BTC of the reference example was re-analysed using Matlab® 
tools (available at http://www.weizmann.ac.il/ESER/People/Brian/CTRW) in order to 
obtain non-Fickian transport parameters. Figure 4(a) shows the evolution of βt with the 
mean travel distance. It illustrates that βt (as well as βx) is a function of the travelled 
path. Indeed, geological systems can encounter heterogeneities on different hierarchical 
scales and the size of the largest heterogeneity is likely to influence β the most. As the 
travel distance increases, the size of this largest heterogeneity must also increase (and 
so must β), otherwise complete averaging would take place, leading to a Gaussian  
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(b) (a) 

  
Fig. 4 (a) Evolution of βt with the mean travel distance and (b) BTC at x = 2 m. 

 
 

behaviour of the particle cloud (Margolin & Berkowitz, 2000). In this case, this 
situation was not reached, but βt had almost converged to its threshold value of 2. 
 Figure 4(b) shows the average BTC at x = 2 m for the reference example as well as 
the corresponding curves obtained with the classical model (ADE) and with the CTRW 
approach, using transport parameters inferred from the analysis of the x = 0.1 m BTC 
(for the ADE, v = 9.91 × 10-5 m s-1 and αL = 1.12 cm, and for the CTRW, βt = 1.57). 
This was done in order to assess whether parameters obtained at a small (arbitrarily 
chosen) scale could be used to predict concentration distributions at larger scale (i.e. to 
assess the upscaling capacities of the CTRW approach). The slope of the concentration 
curve at half relative concentration (i.e. the apparent dispersion coefficient) is better 
predicted in the CTRW framework but the mean breakthrough time is overestimated. 
As advective transport is generally well controlled but does not appear explicitly in the 
CTRW theory, the results in Fig. 4(b) would preach for a hybrid approach, in which 
only dispersion differs from its classical description (just as in the FADE). For the sake 
of comparison, the BTC corresponding to the actual βt value characterizing the BTC at 
x = 2 m (βt = 1.97) is also shown in Fig. 4(b). 
 
 
APPLICATION OF THE FRACTIONAL TRANSPORT EQUATION 
 
According to the methodology proposed by Benson et al. (2000a), the transport 
parameters to be used in equation (1) can also be inferred from BTC analysis. It must 
be noted that each of the 200 average BTC of the reference example was used in this 
inverse modelling procedure. Consequently, compared to the CTRW approach which 
can be used in an actual upscaling process, this methodology requires information at 
every scale of interest. First, βx is obtained graphically from the slope m of the 
apparent dispersivity versus mean position plotted on a log–log graph (Fig. 5(a)), 
according to βx = 2/(m + 1). In this case, numerical points are relatively well aligned 
and the estimate for βx is 1.73 ± 0.01 (for the 95% confidence interval). Those values 
are consistent with the values plotted on Fig. 4(a). Then, the fitting of the standard 
cumulative distribution to a scaled breakthrough curve yields D%  = 4.90 × 10-6 m1.73 s-1. 
Figure 5(b) shows the reference BTC at x = 2 m and the solution of the FADE in the 
corresponding transport conditions. The slope of the curve at half relative 
concentration is relatively well predicted using the FADE, but significant differences 
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 Fig. 5 (a) βx and the scale effect and (b) BTC at x = 2 m. 

remain in the tails of the distribution. Indeed, due to the very low variance of the ln(K) 
field, the mean concentration distribution appears to be nearly Gaussian, with quickly 
converging tails. This behaviour cannot be correctly reproduced using the FADE 
simultaneously to a scale effect in apparent dispersion. The corresponding solution to 
CTRW, for βt = βx = 1.73,  is also illustrated in Fig. 5(b). 
 Zhou & Selim (2003) proposed another method allowing the simultaneous 
estimation of βx and D%  based on the evolution of the spatial variance of the particle 
cloud in time σ2

C. They proposed to fit on this plot a nonlinear model of the type σ2
C = 

AtB, where A and B are linked to βx and D% . Theoretically, parameters obtained from 
joint estimation should model more accurately the time dependence of the variance. A 
value βx = 1.77 was found. However, the value D%  = 3.81 × 10-4 m1.77 s-1 that was also 
obtained, led to a very poor prediction of BTC at larger scale (Fig. 5(b)). This 
illustrates the major problem when using nonlinear optimization to fit a given model to 
experimental data: if the model is too sensitive to one of its parameters, the value of 
that parameter can be largely influenced by experimental artefacts. 
 
 
CONCLUSIONS 
 
Flow and transport were simulated numerically in the case of a confined heterogeneous 
two-dimensional aquifer. Apparent dispersivity exhibited scale-dependence, making 
the use of the classical advection–dispersion equation with local transport parameters 
inappropriate. Unconditional stochastic simulations revealed a relatively high level of 
uncertainty whereas non-Fickian deterministic transport models could relatively safely 
scale up dispersivity values. It was noted that:  
(1) regarding the general CTRW approach, advective transport was poorly predicted 

as it does not explicitly appear anymore;  
(2) this drawback does not exist when using the FADE, but upscaling required a set of 

macroscale dispersivity values; and  
(3) in this example of low heterogeneity level, only a weak tailing behaviour was 

observed for the BTC, which could not be correctly modelled neither in the CTRW 
framework nor using the FADE.  

Finally, it should be emphasized that the key for successful application of both CTRW 
and FADE approaches is good estimation of β. 
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