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Summary The classical Fickian model for solute transport in porous media cannot cor-
rectly predict the spreading (the dispersion) of contaminant plumes in a heterogeneous
subsurface unless its structure is completely characterized. Although the required preci-
sion is outside the reach of current field characterization methods, the advection–disper-
sion model remains the most widely used model among practitioners. Two approaches can
be adopted to solve the effect of physical heterogeneity on transport. First, based on a
given characterization of the spatial structure of the subsurface, upscaling methods allow
the computation of apparent scale-dependent parameters (especially longitudinal disper-
sivity) to be used in the classical Fickian model. In the second approach, upscaled (non-
Fickian) transport equations with scale-independent parameters are used. In this paper,
efforts are made to classify and review upscaling methods for Fickian transport parame-
ters and non-Fickian upscaled transport equations for solute transport, with an emphasis
on their mathematical properties and their (one-dimensional) analytical formulations. In
particular, their capacity to model scale effects in apparent longitudinal dispersion is
investigated. Upscaling methods and upscaled models are illustrated in the case of two
three-dimensional synthetic aquifers, with lognormal hydraulic conductivity distributions
characterized by variance values of 2 and 8.
ª 2008 Elsevier B.V. All rights reserved.
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Introduction

The classical model for solute transport in the subsurface is
the advection–dispersion equation (ADE). It embodies
advection, molecular diffusion and mechanical dispersion
as mass transfer processes
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where C is the solute concentration, t is the time and xi is the
spatial coordinate in direction i. qA

i ¼ viC is the advective
mass flux in direction i, vi being the velocity. The diffusive
mass flux is computed using Fick’s first law qd

i ¼ �D
d
oC=

oxi, where Dd is an effective diffusion coefficient. Local dis-
persion is a physical mechanism of spreading caused by
microscale variability in the velocity field. It is classically
modeled using a Fickian law qD

i ¼ �
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jDijoC=oxj. Diffusion
and dispersion are usually combined in a single tensor DH

ij ¼
Dd þ Dij called hydrodynamical dispersion. Substitution of
mass fluxes in (1) yields
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In a one-dimensional framework, it simplifies to
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where x ¼ x1, v ¼ v1 and DL ¼ DH
11 [m

2/s] is the longitudinal
hydrodynamical dispersion coefficient.

The coefficient of mechanical dispersion is found to de-
pend on the advective velocity. The exact relationship be-
tween these two parameters can however only be
obtained from theoretical considerations for simple or
hypothetical pore systems (Bear, 1972; de Josselin de Jong,
1958). Except in the case of very simple conceptual models,
the coefficient of mechanical dispersion is generally linearly
related to velocity (Bear, 1972)
Dij ¼
k l

aijkl
vkvl

kvk ð4Þ

where aijkl [m] is a fourth-order tensor called dispersivity,
assumed to depend only on soil properties, and kvk is the
norm of the velocity vector. In the case of an isotropic
homogeneous medium, owing to symmetry properties, the
dispersivity tensor can be fully described by two parameters
aL and aT, respectively called longitudinal and transverse
dispersivity (Bear, 1972), both expressed in length units.
In a uniform flow field, if the principal directions of the dis-
persion tensor are aligned with the principal directions of
the velocity field, we have

DL ¼ aLv þ Dd ð5Þ
DT ¼ aTv þ Dd ð6Þ

where DL is already used in (3) and DT ¼ DH
22 ¼ DH

33 quantifies
mechanical dispersion in a direction transverse to flow.

An extensive experimental validation of (4) was per-
formed. Reference books usually provide plots of the longitu-
dinal dispersion versus velocity and show that in the
laboratory (5) and (6) are valid under typical groundwater
flow conditions (Bear, 1972; Domenico and Schwartz, 1998;
Fetter, 1999; Greenkorn, 1983). Other studies were also con-
ducted at larger scale. For example, Klotz et al. (1980) inves-
tigated in the laboratory and in the field a more general
relationship DL ¼ aLvB þ Dd and found that parameter B
should be close to one. They also showed the dependency of
longitudinal dispersivity to soil sedimentological properties.

Although supported by several theoretical models and
verified under well-controlled laboratory conditions and
for transport in homogeneous aquifers (e.g. Taylor and How-
ard, 1987), the Fickian model of dispersion has shown its
limits when predicting solute transport under certain other
conditions. Dispersion is basically an advective process,
as it is caused by variations in fluid velocity. However, such
variations do not only take place at the pore scale, but
also occur at larger scales, ranging from macroscopic to
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megascopic (Domenico and Schwartz, 1998; Fetter, 1999;
Vogel and Roth, 2003). At the field scale, commonly encoun-
tered geological structures influence contaminant transport
drastically, leading to velocity variations over several orders
of magnitude. This includes the effects of stratification and
the presence of lenses with higher or lower permeability.
Preferential pathways, such as fractures, can also lead to
anomalous transport (Hauns et al., 2001). At the mega-
scopic scale, differences between geologic formations also
cause non-ideality in solute transport. As the flow path in-
creases in length, a solute plume can encounter greater
and greater variations in the aquifer, causing the variability
of the velocity field to increase. Because dispersivity is re-
lated to the variability of velocity, neglecting or ignoring
the true velocity distribution (i.e. by replacing the hetero-
geneous medium by an equivalent homogeneous one) must
be compensated for by a corresponding higher apparent dis-
persivity (or macrodispersivity), leading to what is com-
monly called the scale effect of dispersion (Fetter, 1999;
Fried, 1975).

This scale effect first arose from the comparison of lab-
oratory and field values of dispersivity. Whereas typical val-
ues of dispersivity from column experiments range between
0.01 and 0.1 m, values of macroscopic dispersivity are in
general three to four orders of magnitude larger (Gelhar
et al., 1992; Lallemand-Barrès and Peaudecerf, 1978). It
has also been widely observed that field-scale dispersion
coefficients increase with distance and with time (Sauty,
1978, 1980). This scale effect was also demonstrated using
controlled laboratory experiments, e.g. by Silliman and
Simpson (1987).

The main challenge in addressing the scale effect of dis-
persion lies in finding a proper characterization of the pro-
cesses occurring at scales between the laboratory scale
and the megascopic scale. While microscopic processes (at
the centimeter scale and below) are usually well under-
stood, and while classical field methods generally allow a
proper characterization of large geologic units (at the kilo-
meter scale), hydraulic conductivity will vary in compli-
cated ways at an intermediate scale (from the decimeter
to the kilometer scale). Three main research directions
have been investigated for the past 20 years, to improve
the characterization of the spatial structure of the subsur-
face and the identification of hydraulic properties variations
at such intermediate scale. First, field and laboratory char-
acterization methods have received a growing attention.
The advancing edge of geophysics provides new methods,
such as time-domain reflectometry (Javaux and Vancloo-
ster, 2003), ground penetrating radar (Lambot et al.,
2004) or electrical resistivity tomography (Kemna et al.,
2002; Slater et al., 2000), that are currently being applied
to the characterization of subsurface transport problems
(see also Chen et al. (2001) and Hubbard et al. (2001)).

While geophysical methods contribute largely to the
improvement of soil characterization at intermediate scales
(Hubbard and Rubin, 2000), their results are usually af-
fected by larger uncertainties. As hydraulic properties of
subsurface materials cannot be fully characterized in a
deterministic way, stochastic methods must be invoked.
Stochastic analysis provides upscaling methods that enable
the variability in flow and transport to be related to the var-
iability and the spatial structure associated to hydraulic
properties of the heterogeneous medium under consider-
ation. Most of these methods are based on a geostatistical
description of the heterogeneity, either assuming finite cor-
relation lengths (Dagan, 1984; Gelhar and Axness, 1983) or
not (Zhan and Wheatcraft, 1996). Methods adapted to dis-
crete permeability distributions were also developed
(Eames and Bush, 1999).

Since classical stochastic approaches allow the compu-
tation of apparent flow and transport parameters, the
advection–dispersion equation must be valid at the scale
of interest and concentration distributions needs to be
Gaussian. Studies have shown that after a sufficiently long
travel time, according to the Central Limit Theorem, solute
plumes indeed tend to have a Gaussian shape (Fiori et al.,
2003a; Jankovic et al., 2006). However, for intermediate
times, this observation cannot usually be made. Therefore,
a third main research area focuses on the upscaling of the
transport equation itself. Higher-order and fractional-order
partial differential equations were either developed or
brought to the field of hydrogeology (Benson et al.,
2000a; Berkowitz and Scher, 1995; Cushman, 1991; Cush-
man and Ginn, 1993; Neuman and Orr, 1993; Scheidegger,
1960).

In this paper, a classification of existing modeling ap-
proaches is proposed and theoretical models are reviewed
with an emphasis on their mathematical formulations and
their capacities to model the scale effect in longitudinal dis-
persion. We make the difference between upscaling meth-
ods for Fickian transport parameters (section ‘‘Upscaling
methods for longitudinal dispersivity’’) and non-Fickian up-
scaled transport equations (section ‘‘Upscaled transport
equations’’), and we evaluate their capabilities to predict
inert solute transport in saturated heterogeneous media. A
similar review was already proposed by Zhou and Selim
(2003), without mentioning inclusion models, telegraph
equations, or Continuous Time Random Walks (CTRW). The
review by Cushman et al. (2002) goes along the same lines
of this paper. They however provide a more general mathe-
matical formalism for the methods and provide more details
on homogenization and mixtures theories, which are only
mentioned in this paper. The methods and models are illus-
trated and compared based on two particular three-dimen-
sional reference examples. From this point of view, this
work also goes along the lines of Trefry et al. (2003), by pro-
viding an extended theoretical background for the various
models and by investigating three-dimensional situations
rather than two-dimensional ones.
Reference examples

A conceptual example is used as a basis for the comparison
of upscaling methods and upscaled equations. This example
will not be used to provide a rigorous and extensive compar-
ison of the models and methods. It will rather be used to
illustrate their respective performances in a simple but real-
istic situation. The reference example is therefore designed
to be simple enough for allowing an easy application of all
methods and models, while still incorporating a wide range
of potential physical processes.

Flow and transport are numerically simulated in a 512 m
long, 128 m wide and 128 m thick, three-dimensional
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confined aquifer model. The grid size DL is constant and
equal to 1 m, yielding a total of 8,388,608 cubic cells. Left
(X ¼ 0 m) and right (X ¼ 512 m) boundaries are fixed-head
boundaries in order to impose a mean gradient J ¼ 1% in
the longitudinal direction, whereas upper (Z ¼ 64 m), lower
(Z ¼ �64 m), rear (Y = 64 m) and front (Y ¼ �64 m) bound-
aries are no-flow/no-diffusion boundaries. The resulting
flow field has a spatially uniform mean component parallel
to the no-flow/no-diffusion boundaries. The permeability
field K is a stationary random field, lognormally distributed
and spatially correlated (Fig. 1a). We define Y ¼ lnðKÞ,
where K is the permeability (expressed in [m/s]) and ln is
the natural logarithm. The Y field was generated using a
spectral method (Dietrich and Newsam, 1993), using an iso-
tropic exponential covariance model CYY , with a correlation
length k ¼ 5 m. To illustrate the effect of heterogeneity on
solute transport, we tested two different values of vari-
ance: r2

Y ¼ 2 and r2
Y ¼ 8. The geometric mean of the field

is KG ¼ expð�9Þ m=s.
At the field scale, multiple geologic materials are typi-

cally encountered and, most of the time, the assumptions
of stationarity, constant porosity and the use of very simple
Figure 1 Reference example – case r2
Y ¼ 2. (a) Log-permeability

plume (logarithm of the relative concentration) at time t ¼ 500 day
injection zone. Control planes for reference breakthrough curves (
initial and boundary conditions would not be adequate. How-
ever, in a field problem, major hydrogeologic units can usu-
ally be mapped with a reasonably low uncertainty, and can
be incorporated into a numerical model for groundwater
flow. We therefore consider here the problem of solute
transport over a finite distance, through a single hydrogeo-
logic unit with a constant mean hydraulic conductivity and
a certain level of intrinsic variability. We adopted a very
common model for heterogeneity, usually suited to describe
the natural variability of unconsolidated geological material.

It appears that the correlation and the variance values
used in this study are in the range of other recent numerical
studies. For example, Salandin and Fiorotto (1998) investi-
gated flow and transport in two-dimensional synthetic aqui-
fers with correlation lengths being 2–8 times the grid size
and variances between 0.05 and 4. Trefry et al. (2003) per-
formed two-dimensional transport simulations in isotropic
log-Gaussian permeability fields with similar structural
parameters, over a larger domain (up to 1024 times the
correlation length in the longitudinal direction). Large
three-dimensional synthetic aquifers were investigated by
Jankovic et al. (2006) for variance values between 2 and 8.
field. (b) Logarithm of Darcy velocity vD. (c) Snapshot of the
s. The small cube located in the upstream zone delineates the
BTC’s) are also shown.
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Figure 2 Comparison of probability density functions (PDF’s) of Darcy velocity components for r2
Y ¼ 2 and r2

Y ¼ 8. Ideal Gaussian
distributions are also drawn for comparison with transverse velocity probability density functions.
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Flow was solved using the block-centered finite-differ-
ence code MODFLOW 2000 (Harbaugh et al., 2000). Even
for r2

Y ¼ 2, the velocity field exhibits preferential pathways
and more stagnant zones (Fig. 1b). Fig. 2 shows the velocity
distributions. The results exhibit trends similar to what Tre-
fry et al. (2003) obtained using two-dimensional simula-
tions. The peak of the longitudinal velocity distribution
becomes sharper as variance increases, and the apparent
curvature of the distribution is turned upward. The heavy
tails of the high-variance-case distribution might also an-
nounce anomalous transport. Transverse velocity distribu-
tions have a shape comparable to the distributions of
Trefry et al. (2003).

Effective permeability was obtained from the computed
total discharge through the domain, using Darcy’s law and
the gradient imposed at boundaries. Table 1 summarizes
the values of effective permeability and velocity variances.
The literature on upscaling of flow in heterogeneous media
is very abundant. We simply refer the reader to the review
ofWen andGomez-Hernàndez (1996) and apply here basic re-
sults from stochastic flow theories. For a 3D isotropic med-
ium, the theoretical effective permeability is Ke;th ¼ c� KG

(Gelhar, 1993). c ¼ expðr2
Y=6Þ is the flow factor introduced

by Gelhar and Axness (1983) to account for flow dimensional-
ity. In this case, it appears that taking c ¼ 1, as advised by
Dagan (1989), yields a higher discrepancy between the ob-
served Ke and its theoretical value. The variance of the veloc-
ity components are r2

v1;th
¼ 8r2

YK
2
gJ

2=15 and r2
v2;th
¼ r2

v3;th
¼

r2
YK

2
gJ

2=15 (Gelhar, 1993). If a correct order of magnitude is

predicted for the case r2
Y ¼ 2, classical stochastic theories

totally underestimate velocity variance values for the case
r2
Y ¼ 8.
Table 1 Effective permeability, statistics of the flow field,
and corresponding theoretical values from stochastic models

r2
Y ¼ 2 r2

Y ¼ 8

Ke (10�4 m=s) 1.575 3.276
Ke;thðc ¼ expðr2

Y=6ÞÞ (10
�4 m=s) 1.722 4.682

Ke;thðc ¼ 1Þ (10�4 m=s) 1.234 1.234

r2
v1

(10�12 m2=s2) 3.554 137.3
r2
v1;th

(10�12 m2=s2) 1.625 6.498
r2
v2

(10�13 m2=s2 6.914 518.5
r2
v3

(10�13 m2=s2) 7.556 575.5
r2
v2;th
¼ r2

v3;th
(10�13 m2=s2) 2.031 8.123
Transport was solved using the particle-tracking code
RWHet (Labolle, 2000). Initial concentration is null every-
where. 1,000,000 particles are released instantaneously at
time t ¼ 0. The particles are spread uniformly over a cubic
region of 5k� 5k� 5k (Fig. 1), yielding an initial concentra-
tion C0 of 64 particles per cell. The injection zone is cen-
tered on the longitudinal axis of the domain and located
at a distance 5k downstream of the upstream fixed-head
boundary. The clear distance to upper, lower, rear and front
boundaries is 10:3k. Boundary effects should therefore be
kept to a minimum (Bellin et al., 1992; Rubin and Dagan,
1988, 1989). Due to the limited extent of the source, it is
also expected that the plume does not sample the full het-
erogeneity of the aquifer. Local (or microscopic) longitudi-
nal and transverse dispersivities are set equal to 0.1 m and
0.01 m, respectively. The effective diffusion coefficient is
Dd ¼ 10�9 m2=s. Typically, such local processes are not con-
sidered when performing numerical simulations of solute
transport in heterogeneous media. However, as already sta-
ted, the goal of these simulations is not to focus on some
idealized situation in which one of the models will perform
best, but rather be representative of a simplified but realis-
tic field situation.

The porosity is assumed to be constant and equal to
h ¼ 40%. The corresponding average longitudinal and trans-
verse grid Peclet numbers are respectively equal to
Pe;L ¼ vDL=DL � DL=aL ¼ 10 and Pe;T ¼ vDL=DT � DL=aT ¼
100, v being a characteristic mean velocity. Even at a lower
variance, the resulting solute plumes are relatively elon-
gated and distorted (Fig. 1c). However, we will show that,
for r2

Y ¼ 2, cumulative breakthrough curves at control planes
have a Gaussian shape, which could make the use of macro-
dispersion theories more suited to this situation. We will also
show that cumulative breakthrough curves becomemore dis-
torted as variance increases, as a result of the higher vari-
ability of the velocity field and as a result of diffusive mass
exchange between zones of high and low velocity.

Upscaling methods for longitudinal dispersivity

In a general stochastic framework, statistics of output vari-
ables (e.g. concentration distributions) are drawn from the
statistics of input variables (e.g. hydraulic conductivity dis-
tributions). Monte Carlo simulations are the most general
tool to establish the link between input and output variables,
especially when they are nonlinearly related. The approach
consists in generating a large number of statistically
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equivalent sets of input variables, and explicitly solve the
problem of interest to obtain a set of output variables. How-
ever, the focus of the paper is on analytical and semi-analyt-
ical models for solute transport, and Monte Carlo methods
will not be further reviewed here.

Historically, one of the first stochastic method applied
to study field-scale solute transport under heterogeneous
conditions is the stochastic-convective method (Dagan
and Bresler, 1979; Simmons, 1982; Sposito et al., 1986).
The tracer is divided into a finite number of particles,
being transported along their own path according to some
velocity (Simmons et al., 1995). Typically, the velocity dis-
tribution is assigned a probability density function, where
any velocity realization is assigned a probability. The main
assumption is that particles on a streamline do not interact
at all with particles on other streamlines. Stochastic-con-
vective models are therefore also referred to as stochastic
streamtube models. This class of stochastic methods is
mostly suited to the modeling of transport in the vadose
zone, where solute migration mainly occurs in the vertical
direction (Dagan and Bresler, 1979). Applications in the
saturated zone have also been reported for reactive trans-
port (Ginn, 2001; Luo et al., 2006). Since these methods do
not provide any quantitative description of solute plumes,
but are instead restricted to the prediction and analyses
of breakthrough curves, they will not be further described
either.

Instead, we will focus here on stochastic perturbative
methods, which represent the broadest category of stochas-
tic models. These methods involve small-scale fluctuations
of random input and output variables, linked in an analyti-
cal framework through first-order (or higher-order) approx-
imations. A heterogeneous permeability field is viewed as
one realization of a spatial multidimensional random pro-
cess, characterized by a mean, a variance and a covariance
function (Gelhar, 1993). The permeability field also has to
fulfill stationarity and ergodicity. Stationarity implies that
there is no spatial trend in the permeability and that the
correlation length is constant. Ergodicity implies that all
states present in all possible statistically equivalent realiza-
tions are represented in the single realization of interest.
This latter property allows ensemble-averaging over all
realizations to be equivalent to spatial averaging over one
single realization. Finally, the hydraulic conductivity is usu-
ally assumed to be lognormally distributed. This assumption
has the advantage that negative values are excluded, which
is consistent with the physical requirement that permeabil-
ity is positive (Gelhar, 1993). Although field distributions of
hydraulic conductivity are not necessarily lognormal, such
distributions have been observed, e.g. by Sudicky (1986)
for the Borden aquifer, or by Hess et al. (1992) for the Cape
Cod aquifer.

Three main stochastic approaches are reported in this
section, each corresponding to a particular type of hetero-
geneity. First, the ‘‘classical’’ stochastic theory focuses on
lognormally distributed permeability fields characterized
by covariance models having finite correlation lengths. This
theory is referred to as the classical stochastic model, be-
cause it builds upon the original and pioneering works of
Gelhar et al. (1979), Gelhar and Axness (1983) and Dagan
(1984). Since the literature in this domain is relatively
abundant (see the textbooks of Dagan (1989), Gelhar
(1993) or Rubin (2003)), this paper does not fully detail
the approach. Instead, the emphasis is placed on one of
the major contributions in the domain: the Eulerian deriva-
tion of macrodispersion by Gelhar and Axness (1983). In
section ‘‘Extension to fractal permeability fields’’, the
‘‘classical’’ stochastic approach is extended to account
for permeability fields characterized by algebraic covari-
ance models, corresponding to fractal permeability fields
(Zhan and Wheatcraft, 1996). Both finite correlation length
models and fractal models have also been reviewed by Vo-
gel and Roth (2003). Finally, models adapted to permeabil-
ity fields having a discrete and/or a multimodal distribution
are presented in section ‘‘Inclusion models’’. Although the
latter category of models can virtually mimic any two-point
covariance model (Dagan et al., 2003), their most straight-
forward application is transport through media composed
of inclusions of given shapes and permeabilities, with a dis-
crete permeability distribution. In this work, these models
are referred to as ‘‘inclusion models’’.
The ‘‘classical’’ stochastic approach

Stochastic pertubative models are based on a small pertur-
bation approach. Variables of interest are split into a con-
stant mean (bracketed value h i) and a zero-mean random
perturbation (marked value 0), caused by the variability in
the permeability field. In an Eulerian framework, concentra-
tion and velocity are the variable of interest and are ex-
pressed as (Gelhar and Axness, 1983)

C ¼ hCi þ C0

v ¼ hvi þ v
0 ð7Þ

Substituting (7) into the advection–dispersion equation
and taking expected values leads to a governing equation
for the mean concentration hCi
ohCi
ot
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hvii
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oxi
�
X
i

X
j

o

oxi
DH
ij

ohCi
oxj

¼ �E
X
i

v 0i
oC0

oxi

" #
ð8Þ

where E½ � is used as an alternative notation to h i. Eq. (8)
is similar to (2), except that a second-order term arises
here. It reflects additional mass transport due to correla-
tion between specific discharge and concentration fluctua-
tions. It produces a large-scale dispersion effect and can
be approximated using a Fickian-like law (Gelhar and Ax-
ness, 1983)

E
X
i

v 0i
oC0

oxi

" #
¼
X
i

o

oxi
hv 0iC

0i

� �
X
i

X
j

o

oxi
D�ij

ohCi
oxj

� �
ð9Þ

The macrodispersion tensor D�ij is proportional to the
absolute value of migration velocity, as for the local disper-
sion tensor (Gelhar and Axness, 1983). D�ij can be evaluated
from (9) using the governing equation of concentration per-
turbations. The latter is obtained by subtracting (8) from
the original governing equation of C, which yields
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oC0

ot
þ
X
i

v 0i
ohCi
oxi
þ hvii

oC0

oxi

� �
�
X
i

X
j

o

oxi
DH
ij

oC0

oxj

� �

¼
X
i

o

oxi
v 0iC

0 � hv 0iC
0i

� �
� 0 ð10Þ

The approximation in (10) is of crucial importance. It im-
plies that velocity fluctuations are sufficiently small for sec-
ond-order products to be neglected. For a lognormal
permeability field, it can be shown based on a similar sto-
chastic analysis of the flow equation that this condition on
velocity perturbation requires a small variance of the Y
field, so that it can be linearized (Gelhar, 1993).

In general, (8) and (10) must be solved simultaneously.
However, a decoupling can be accomplished provided that
concentration fluctuations occurs at a much smaller scale
than variations associated to the mean concentration (Gel-
har, 1993). It is then possible to solve (10) to evaluate the
macrodispersive flux and subsequently substitute it in (8).
In the particular case of a mean flow occurring in direction
i ¼ 1, Gelhar and Axness (1983) showed using Fourier-trans-
form techniques that in the lowest order perturbation the-
ory, a�L ¼ D�11=hv1i can be computed as

a�LðtÞ ¼
Z

1� expð�bhv1itÞ
c2b

1� s21
s2

� �2

SYYðsÞds ð11Þ

where b ¼ 2pis1 þ 4p2aLs21 þ 4p2aTðs22 þ s33Þ and s ¼ ðs1; s2; s3Þ
are the Fourier coordinates. SYY is the density spectrum of
the log-permeability field. SYY ¼FðCYYÞ is the Fourier trans-
form of the log-permeability covariance function. Eq. (11)
establishes the link between log-permeability fluctuations
and macrodispersivity. Macrodispersivity is basically found
to be dependent on the level of heterogeneity of the
subsurface.

Moreover, macrodispersivity is also proved to be time-
dependent and, as the exponential term in (11) vanishes
for large time, provided the velocity spectrum is bounded,
macrodispersivity converges to a constant asymptotic value.
These are important features of solute transport in hetero-
geneous formations that are statistically homogeneous. In
the preasymptotic regime, since a�L increases with time,
the dispersive flux is not Fickian. In other words, the advec-
tion-dispersion equation is not an appropriate model for sol-
ute transport at early times. Second, provided that the
velocity field has a bounded spectrum, solute transport is
expected to become Fickian in the long time limit. The tra-
vel distance needed to reach this asymptotic behavior is
usually of the order of tens of horizontal correlation lengths
(Dagan, 1988).

Eq. (11) requires that ergodic conditions are fulfilled.
This implies that solute plumes sample the full distribution
of velocities in the aquifer. In the case of a source zone of a
small size compared to correlation length, solute plumes do
not experience the full variability of the aquifer. Hence,
effective dispersion coefficients not only depend on the
scale of heterogeneities, but also depend on the scale of
the plume itself (Rajaram and Gelhar, 1993). Solute plumes
originating from sources of finite size are therefore ex-
pected to be characterized by lower dispersion coefficients
than predicted by (11) (Attinger et al., 1999; Dagan, 1990;
Dentz et al., 2000a; Dentz et al., 2000b; Rajaram and Gel-
har, 1993).
Finally, we mention that similar derivations of macrodis-
persivities were performed by other authors. Dagan (1984,
1988, 1989) used a Lagrangian framework, but had to use
an approximate relationship between the Eulerian and the
Lagrangian velocity covariance. Neuman et al. (1987) used
a more abstract mathematical analysis based on semigroup
theory. Basically, classical stochastic perturbative ap-
proaches to derive macrodispersivity values all require an
assumption of relatively small perturbations, leading to lit-
tle discrepancy among them and a domain of validity r2

Y < 1
(Gelhar, 1993).
Extension to fractal permeability fields

Fractal geometry was initially introduced in the field of
hydrogeology in the framework of streamtube models
(Wheatcraft and Tyler, 1988; Zhou and Selim, 2002). Particle
paths are described as fractal lines, and the resulting vari-
ability in travel times allows longitudinal dispersivity to
become time- or space-dependent. However, the use of frac-
tal geometry in subsurface hydrology expanded, based on the
observation that pore space distributions and, more gener-
ally, log-permeability distributions happen to be self-similar
(Adler, 1996; Molz and Boman, 1995; Molz et al., 2004; Mul-
ler, 1996; Pachepsky and Timlin, 1998; Painter, 1996;
Tennekoon et al., 2003). An object is said to be self-similar
when it can be subdivided in parts, each of which being (at
least approximately) a reduced copy of the whole (Mandelb-
rot, 1983). For such an object, it is not possible to identify
a single characteristic length. Self-similarity is therefore
linked to the concept of scale invariance.

An example of fractal model of heterogeneity is the frac-
tional Brownian motion (fBm). A fBm is a non-stationary sto-
chastic process and is defined through its increments. For
example, a one-dimensional fBm mðxÞ (x being the spatial
coordinate) is defined using nðx; hÞ ¼ mðx þ hÞ �mðxÞ. The
increments nðx; hÞ have a Gaussian distribution, with a zero
mean and a variance r2. Moreover, nðx; hÞ has to be statisti-
cally invariant with respect to an affine transformation
(Molz et al., 1997). This latter property implies that
nðx; rhÞ and rHnðx; hÞ have the same Gaussian distribution,
with a zero mean and a variance r2Hr2 (Molz et al., 1997).
It also follows from these properties that the semi-vario-
gram of mðxÞ follows a power law of the type r2h2H

(Fig. 3). The variable nðx; hÞ that had to be defined to char-
acterizemðxÞ is another fractal model of heterogeneity: the
fractional Gaussian noise (fGn). H is the so-called Hurst
coefficient. Its value is bounded according to 0 < H < 1. It
is used to define the fractal dimension of an object
df ¼ 1þ de � H (de being the Euclidian dimension). H ¼ 1
corresponds thus to a non-fractal medium. A power-law
variogram does not converge to a threshold value. The
apparent correlation length is therefore infinite. Similarly,
it can be shown that the variogram of a fGn exhibits much
larger correlations than exponential or Gaussian variogram
models.

The fractal Lévy-stable motion (fLm) is a third notewor-
thy fractal model, based on non-Gaussian distributions
called Lévy distributions (Lévy, 1937; Molz et al., 1997;
Painter and Paterson, 1994). Such probability distributions
will be further presented in section ‘‘CTRW and frac-
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Figure 3 Comparison of fractal fBm semi-variograms with the
theoretical exponential model adopted for the reference
example (case r2

Y ¼ 2).
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tional-order PDE’s’’. One should also mention multifractal
models of heterogeneous log-permeability fields. The fields
do not scale according to a single Hurst coefficient any-
more, but can be properly scaled by a variety of H values
(Liu and Molz, 1997; Tennekoon et al., 2003). On a log–
log scaled graph, a monofractal power-law covariance func-
tion plots as a straight line (Fig. 3), while multifractal struc-
ture functions usually exhibit a curvature. In order to
simulate long-range correlation, Rajaram and Gelhar
(1995) also proposed to use a multiscale exponential model.

Apparent longitudinal dispersivities can be computed
using the tools initially developed within the framework of
stationary stochastic processes, using the appropriate vari-
ogram model. In the case of fractal heterogeneity, as corre-
lation persists over a wide range of spatial scales, Fickian
solute transport behavior will never be achieved, and appar-
ent longitudinal dispersivity will monotonically increase
with plume scale to infinity (Bellin et al., 1996; Neuman,
1995). However, for most geological formations, physical
boundaries exist. When substituting the appropriate spec-
trum of the fractal log-permeability field into (11), cutoff
frequencies have to be introduced to account for character-
istic spatial scales of the problem and force apparent dis-
persivity to eventually converge to a constant macroscale
value (Di Federico and Neuman, 1998; Hassan et al., 1997;
Kemblowski and Wen, 1993). For example, Zhan and Wheat-
craft (1996) derived analytical expressions for apparent dis-
persivity in fBm lnðKÞ fields using Lmax, defined as the
smallest distance to a no-flow boundary. The corresponding
analytical solution will be illustrated for the reference
examples.

Inclusion models

Transport in aquifers made of inclusions of highly contrasted
permeabilities has only been more recently investigated.
Desbarats (1990) performed pioneering numerical simula-
tions using a binary medium with inclusions of low perme-
ability and showed that permeability contrast and
inclusion volumetric proportion were the main controlling
parameters for transport. Rubin (1995) proposed a first-or-
der stochastic approach and derived analytical results in
the case of bimodal isotropic media, extended to aniso-
tropic situations by Stauffer and Rauber (1998). Like other
results from stochastic theories, these results are only valid
for low permeability contrasts. Eames and Bush (1999) and
later Dagan and Lessoff (2001) and Lessoff and Dagan
(2001) studied transport properties of two- and three-
dimensional bimodal fields composed of inclusions of fixed
size and of constant permeability, positioned at random in
an homogeneous matrix. Their developments were con-
ducted under the assumption of low volumetric proportion
of inclusions (i.e. in the dilute system limit) so that advec-
tive transport could be solved by isolating one inclusion and
the dispersive effect of a collection of lenses was deter-
mined subsequently in a simple additive manner.

Dagan et al. (2003) and Fiori et al. (2003a, 2006) further
refined the analysis by considering distributions of blocks of
different size and of different permeabilities. Dagan et al.
(2003) suggested to model heterogeneous formations as
multiphasic ones, made up of M types of block geometry
and of N different types of material (Fig. 4a). Blocks are as-
sumed not to overlap. A point of the medium lies in the
block i; j of shape i (i ¼ 1; . . . ;M) and of material j
(j ¼ 1; . . . ;N) with a known probability pij. pij thus denotes
the volumetric proportion of blocks of size i and of material
j in the medium. Centroid positions of blocks xij are how-
ever not known and are treated as random variables. If Kj

is the permeability of material j, the overall conductivity
field is given by (Dagan et al., 2003)

KðxÞ ¼
X
i

X
j

KjIðx� xijÞ ð12Þ

where the indicator function Iðx� xijÞ is equal to 1 for x
belonging to the inclusion ði; jÞ and is equal to zero other-
wise. It is emphasized that permeabilities of two neighbor-
ing blocks remain uncorrelated. Mean and variance of the
log-permeability field can be computed from

lnðKgÞ ¼
X
i

X
j

pijYj ð13Þ

r2
Y ¼

1

2

X
i

X
j

X
k–j

ðYj � YkÞ2pijpik ð14Þ

where Yj ¼ lnðKjÞ. It appears from (14) that the variance of
such media can be very high, well above the classical limit
r2
Y < 1 established for the validity of first-order stochastic

theories. To further simplify the model, Dagan et al.
(2003) proposed to represent blocks as inclusions of regular
size, such as ellipses or ellipsoids, and to assume that they
are submerged in a matrix of arbitrary conductivity K0

(Fig. 4b). In a given heterogeneous formation of this geom-
etry, the solution of the flow field can be represented as a
distribution of singularities of source type, each source cor-
responding to a given block. The self-consistent approach
proceeds by isolating one inclusion of shape i and perme-
ability Kj and by suppressing the remaining ones in the ma-
trix of permeability K0. The flow and transport problems are
then solved assuming there is no interaction between each
block (Fig. 4c). As K0 could be any reference permeability
somehow linked to the effective permeability Ke of the
medium, the self-consistent approach assumes K0 ¼ Ke

and K0 reflects the presence of the neighborings blocks that
have been suppressed. The derivation of Ke for two- and
three-dimensional isotropic media is given by Dagan (1979)
and extended to three-dimensional anisotropic media in
his textbook (Dagan, 1989).
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Figure 4 Conceptual aquifer model and the self-consistent
approximation (in the 2D case). (a) Statistically homogeneous
but anisotropic heterogeneous permeability field. (b) Model of
inclusions of regular shape disposed at random in a matrix. (c)
Single inclusion embedded in a matrix. Adapted from Dagan
et al. (2003).
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Under ergodic condition, the spatial moments of a solute
plume can be computed from the statistical moments of the
trajectory of a single particle. We consider a solute particle
injected at time t ¼ 0 and at position x0. The trajectory of
this particle is x ¼ Xðt; x0Þ and is given by (Dagan et al.,
2003)

Xðt; x0Þ ¼ x0 þ Vtþ
X
i

X
j

X0ij ð15Þ

where V is the far field velocity and X0ij is the trajectory fluc-
tuation caused by block ði; jÞ. The second moments of tra-
jectories are given by (Dagan et al., 2003)

X11ðtÞ ¼
X
i

X
j

E X 0ij;1ðx0 � xijÞX 0ij;1ðx0 � xijÞ
h i

ð16Þ

where subscript 1 refers to the fluctuations along the longi-
tudinal trajectory.

Following the work of Dagan et al. (2003), we further
consider the continuous limit for permeability and for inclu-
sion size. The volumetric proportion of blocks of size i and
of material j tends to pij ! pfðK;AÞdKdA. p ¼

P
i

P
jpij 6 1

is the total volumetric proportion of inclusions and A is a
characteristic size of inclusion (e.g. the longitudinal semi-
axis). fðK;AÞ is the joint distribution of permeability and el-
lipse size. It is assumed that the anisotropy ratio is identical
for each inclusion. In that case, (16) can be transformed
into (Dagan et al., 2003)

X11ðtÞ ¼ p

Z
X 021 ðt; x0;K;AÞ

VðAÞ fðK;AÞdx0 dK dA ð17Þ
where VðAÞ is the volume occupied by the ellipse of size A.
In (17), integration is performed over all possible initial
positions, i.e. �1 < x10 <1, �1 < x20 <1 and �1 <
x30 <1. Here, x10, x20 and x30 are initial position coordi-
nates. The longitudinal apparent dispersivity is computed
from (Dagan et al., 2003)

a�LðtÞ ¼
1

2V

dX11ðtÞ
dt

ð18Þ

At the limit for t!1, a�L converges to a constant value
(Dagan et al., 2003)

a�Lð1Þ ¼
p

2

Z
X 021 ð1; ð�1;x20;x30Þ;K;AÞ

VðAÞ fðK;AÞdx20 dx30 dKdA

ð19Þ

Analytical solutions for flow past a single ellipse of radius A
and permeability K embedded in a homogeneous medium of
permeability Ke (Fig. 4c) are given, e.g. by Dagan (1979,
1989), Dagan and Lessoff (2001), and Fiori et al. (2003a).
The solution of (19) for the reference example is illustrated
in the following section.

Numerical studies have shown that the self-consistent
approach could be reasonably used to compute apparent
longitudinal dispersivity for solute transport in bimodal iso-
tropic permeability fields, for volumetric proportions of
inclusions ranging from 5% to 40% and for permeability ratios
ranging from 0.01 to 10 (Fiori et al., 2003b; Jankovic et al.,
2003a,b). Recent studies by Fiori et al. (2006) and Jankovic
et al. (2006) also demonstrated the good performance of
the self-consistent approach for solute transport in three-
dimensional isotropic lognormal permeability fields with a
variance going up to 8. It should finally be mentioned that
Dagan and Fiori (2003) and Fiori and Dagan (2003) studied
transport properties of media with composite inclusions,
that allowed them to derive results without relying either
on the dilute system assumption, or on the self-consistent
approach. The analytical solutions of the corresponding
velocity field are however more complicated, without bring-
ing a significant modeling improvement (Jankovic et al.,
2003b), which makes the self-consistent approach more
appropriate.

Application to the reference example

Spatial moments of solute plumes are widely used to esti-
mate apparent transport parameters (Trefry et al., 2003).
As each particle carries the same mass of tracer M, zer-
oth-, first- and second-order longitudinal spatial moments
of the solute plume are computed according to

m0ðtÞ ¼ MN ð20Þ

m1ðtÞ ¼ M
XN
n¼1

Xn
1ðtÞ ð21Þ

mc
11ðtÞ ¼ M

XN
n¼1

Xn
1ðtÞ � hxðtÞi

� �2 ð22Þ

where N is the number of particles, Xn
1ðtÞ is the longitudinal

position of particle n and hxðtÞi ¼ m1ðtÞ=m0ðtÞ is the mean
longitudinal position of the plume. Mean velocity and appar-
ent longitudinal dispersivity are obtained from (Tompson
and Gelhar, 1990)
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hv1ðtÞi ¼
m1ðtÞ �m1ð0Þ

m0ðtÞt
ð23Þ

a�LðtÞ ¼
mc

11ðtÞ �mc
11ð0Þ

2hv1ðtÞim0ðtÞt
ð24Þ

Spatial moments can no longer be computed when parti-
cles have left the flow domain. Time histories of a�LðtÞ are
therefore limited to about t ¼ 486 days for the case
r2
Y ¼ 2 and t ¼ 86 days for the case r2

Y ¼ 8 (Figs. 5 and 6).
These time scales correspond to travel distances of about
33 and 23 correlation lengths, respectively.

If we ignore issues of ergodicity and the inadequately
high variance values, the application of results from the
classical stochastic approach is relatively straightforward.
The analytical solution of (11) corresponding to a three-
dimensional isotropic exponential covariance model is (Da-
gan, 1984)

a�LðtÞ
a�Lð1Þ

¼ 1� 4

n2
þ 24

n4
� 8

1

n2
þ 3

n3
þ 3

n4

� �
expð�nÞ ð25Þ

where n ¼ hv1it=k and the constant asympotic value is given
by

a�Lð1Þ ¼ r2
Y

k
c2

ð26Þ

where c is the flow-factor introduced previously. Although
taking c–1 allowed a correct prediction of the effective
permeability of the synthetic aquifer, setting c ¼ 1 allows
a better match of the asymptotic apparent longitudinal dis-
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Figure 6 Comparison of the observed apparent longitudinal disper
(with c ¼ expðr2

Y=6Þ). Case r2
Y ¼ 2 (left), and case r2

Y ¼ 8 (right).
persivity (Fig. 5). This is consistent with the results of Chin
(1997), who tested first-order stochastic dispersion theories
using three-dimensional simulations of flow and transport,
for log-permeability variances between 0:5 and 1:5. Preas-
ymptotic transport is difficult to predict, due to ergodicity
requirements that cannot be fulfilled at early times.

It could be argued that results from fractal theories can-
not be applied to the reference examples used in this study,
since the theoretical assumptions underlying the fractal
methods are not fulfilled. We adopt an approach similar to
that of a field problem, and assume that the actual struc-
ture of the log-permeability field is not known. We charac-
terize the latter using fractal methods in order to apply the
corresponding theories. Two power-law approximations of
the theoretical exponential covariance model are tested
(Fig. 3). For the case r2

Y ¼ 2, H ¼ 0:41 correspond to the
small-scale structure of the log-permeability field, whereas
H ¼ 0:22 was obtained by least-square matching of the
covariance function across the whole range of represented
scales. Since the slope of the variogram at zero lag do not
depend on the variance, only the large-scale average Hurst
coefficient has to be recomputed for the case r2

Y ¼ 8. A va-
lue H ¼ 0:18 is found. The method proposed by Zhan and
Wheatcraft (1996) is illustrated here. They used a power-
law fBm model for the semi-variogram of the log-permeabil-
ity field, with a spectrum expressed as

SYYðsÞ ¼
r2
Y

4p
8� 2df

� � Lmax

2p

� �2df�8 1

2psð Þ2Hþde
ð27Þ
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Table 2 Comparison of effective permeability and appar-
ent longitudinal dispersivity with theoretical values derived
from inclusion models

r2
Y ¼ 2 r2

Y ¼ 8

Ke (10�4 m=s) 1:575 3:276
Ke;th (3 facies) (10�4 m=s) 1:574 1:767
Ke;th (5 facies) (10�4 m=s) 1:626 2:573
Ke;th (1001 facies) (10�4 m=s) 1:589 2:574

a�L (m) 9.489 >41.41
a�L;th (3 facies) (m) 14.58 50.01
a�L;th (5 facies) (m) 12.77 63.09
a�L;th (1001 facies) (m) 10.89 54.47

Since convergence is not reached for case r2
Y ¼ 8, the largest

numerical value of a�L is reported here, for comparison with
asymptotic theoretical values.
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Eq. (27) was substituted into (11), which was then
numerically integrated using a trapezoidal rule to compute
the temporal development of macrodispersivity. As SYY is
not bounded for s! 0, the integration is not performed
over the whole frequency range. A minimum cutoff fre-
quency 2p=Lmax is introduced to account for model bound-
aries. Zhan and Wheatcraft (1996) advise to take the
smallest model dimension for Lmax. The computation was
therefore performed with Lmax ¼ 128 m. One may however
wonder if such a definition for Lmax is appropriate, since
the plume never reaches lateral model boundaries. For
the case r2

Y ¼ 2, it appears that the fractal model corre-
sponding to the whole range of spatial scales correctly pre-
dicts macrodispersivity, whereas the short-scale fractal
model overestimates observed values (Fig. 6). For that case,
taking a unit flow factor c ¼ 1 leads to important discrepan-
cies between predicted and observed apparent longitudinal
dispersivities. On the contrary, for the case r2

Y ¼ 8, both
fractal models significantly underestimate apparent longitu-
dinal dispersivity. Taking a unit flow factor value would lead
both models to significantly overestimate a�L. The effective
permeabilities adopted to compute hv1i in (11) are the the-
oretical values of 1:722� 10�4 m=s and 4:682� 10�4 m=s
obtained from classical first-order stochastic theories. As
these values only influence preasymptotic transport and
do not influence constant macroscale values, it was not nec-
essary to use fractal flow theories and compute actual the-
oretical fractal effective permeabilities.

Finally, inclusion models are applied by discretizing the
Gaussian log-permeability distribution into a finite number
of facies of constant permeability. The discrete PDF is com-
puted by dividing the Y space into a finite number of bins of
equal size. The center of bin i is the log-permeability Yi of
the corresponding facies. Facies proportions are computed
from the mean of the PDF over each bin pi ¼

R
bin fðYÞdY.

We test three different discretizations: 3 bins, 5 bins, and
1001 bins. The latter case closely matches the full actual
continuous PDF. It is therefore expected to yield to best
upscaling results. Contrary to fractal models, the effective
permeability explicitly appears in the computation of
asymptotic macroscale longitudinal dispersivity. Ke has
therefore to be computed according to the self-consistent
approach. For a three-dimensional isotropic medium, Ke is
obtained by solving (Dagan, 1989)Z

Ke � K

2Ke � K
fðKÞdK ¼ 0 ð28Þ

where fðKÞ is the distribution of permeability. The results of
the numerical integration of (28) for 3, 5 and 1001 facies are
reported in Table 2. For the case r2

Y ¼ 2, the theoretical va-
lue matches the observed effective permeability closely,
better than the prediction from the classical stochastic the-
ory. The prediction of Ke for the case r2

Y ¼ 8 is lower than
the actual value, but the error remains comparable to that
of the classical stochastic theory. The covariance function
corresponding to an isotropic multi-indicator permeability
field with inclusions of constant size A has a correlation
length k ¼ 3A=4 (Dagan et al., 2003). We compute the con-
stant asymptotic longitudinal dispersivity by transforming
(19) into (Dagan et al., 2003)

a�Lð1Þ ¼ p

Z
a�Lð1;K;AÞfðKÞdK ð29Þ
where a�Lð1;K;AÞ is the asymptotic longitudinal dispersivity
associated with an inclusion of permeability K and radius A,
embedded in a matrix of hydraulic conductivity Ke. In this
work, we also used a cutoff permeability ratio of K=Ke ¼
0:01, in order to account for diffusion into low-permeability
inclusions. Indeed, the theoretical dispersivity associated
with inclusions of decreasing permeability grows without
bounds (Dagan et al., 2003). However, at some point, we
expect diffusion to play a role in transport through low-per-
meability inclusions. To account for this effect, we set
a�Lð1;K;AÞ ¼ a�Lð1;Ke=100;AÞ for K < Ke=100 (Dagan et al.,
2003). Decreasing the value of this cutoff permeability ratio
would typically increase the value of macrodispersivity, by
increasing a�Lð1;K;AÞ for small K in (29). However, in this
case, the probability of having K=Ke < 0:01 (i.e. the volumet-
ric proportion of facies with K=Ke < 0:01) is relatively limited
and the choice of the cutoff permeability is of little impact
on the overall macrodispersivity value. Like the classical
stochastic upscaling method, inclusion models are found to
provide reasonable predictions of asymptotic macrodisper-
sivity (Table 2). Even with a relatively high level of discreti-
zation of the log-permeability distribution (5 facies), a
correct order of magnitude is reached.

We emphasize that the application reported here is
rather simplified. Indeed, considering the relatively small
source size and the limited extent of the domain, ergodicity
is not likely to be fulfilled. The comparison of the numerical
results with the semi-analytical solutions presented could
therefore be highly questionable. Moreover, we only used
semi-analytical results developed under an assumption of
low variance. We recall that the reference examples have
only an illustrative purpose, and are not specifically de-
signed to validate the theories presented.

Nevertheless, for the case r2
Y ¼ 2, it appears that accept-

able and comparable results in terms of apparent longitudi-
nal dispersivity can be obtained based on any of the three
characterizations of the aquifer tested here. The stochastic
approach could be used with a relative confidence, since the
theoretical variance and covariance function were known.
Using a fractal approximation of the covariance function,
we could also model the scale-effect in apparent dispersiv-
ity within reasonable errors bounds. However, we question
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the estimation of the cutoff length scale Lmax. The attempt
to give a physical significance to this mathematical artifact
does not seem to be convincing, since the plume never sam-
pled such a lateral length scale. Inclusion models yielded re-
sults of a similar quality.

On the contrary, for the higher variance case, the classi-
cal stochastic approach could only yield satisfactory results
provided that the appropriate flow factor c was used, and
the fractal model yielded poorer results. Only inclusion
models could yield results of a quality similar to case
r2
Y ¼ 2. Therefore, these models could provide an important

alternative to first-order stochastic theories. Although we
only computed here the constant asymptotic dispersivity,
the approach makes it possible to predict the full time his-
tory of a�L from (18) (Fiori et al., 2003a). Moreover, inclusion
models were recently used to compute full theoretical
BTC’s (Jankovic et al., 2006).
Further insights into practical applications of
upscaling methods for dispersivity

The semi-analytical solutions reported in this section have
mainly been used in the framework of theoretical or numer-
ical studies, aimed at investigating the effect of physical
heterogeneity on solute transport in highly conceptualized
situations (e.g. Chin, 1997; Jankovic et al., 2006). Only in
a very limited number of field examples, measurements
were taken with the spatial resolution required to apply
the solutions presented (Hess et al., 1992; Sudicky, 1986).
In this section, we provide some insight into the practical
applicability and limitations of upscaling methods for dis-
persivity in typical field situations.

The choice of the structural model for K lies at the heart
of the estimation of apparent dispersion coefficients, and
represent the major difference between the approaches
presented in previous sections. In field applications, the
choice of a structural model usually relies on a rather sub-
jective choice. First, field data are usually not dense enough
to fully support the assumption of a multi-Gaussian log-per-
meability field, as used for the reference example and
as required by the classical stochastic method (Gomez-
Hernàndez and Wen, 1998). Hence, the current trend in
groundwater flow and transport modeling is to prefer geo-
logic models in which hydraulic conductivity is not unimodal
and continuously distributed, but rather binned into a finite
number of discrete values. This type of model is further sup-
ported by the development of new tools permitting to
directly characterize the structure of a finite number of
facies from borehole log data (Carle and Fogg, 1996,
1997). In this framework, inclusion models introduced prob-
ably represent a more promising approach.

Secondly, whereas it is clear from Fig. 3 that the fit of a
power-law model on the exponential variogram model is a
bulk approximation, the noise in experimental data col-
lected in the field is usually such that the choice of a single
variogram model is not a straightforward task. However, it
is also not likely that different models fitted on experimen-
tal data with a similar goodness-of-fit would produce signif-
icantly different results, as long as transport predictions are
made on a spatial scale not exceeding the scale at which the
variogram was established. On the contrary, when predic-
tion are made outside of the range of the variogram, differ-
ent structural models will have fundamentally different
predictions. While the classical stochastic model and inclu-
sion models will predict a convergence towards a constant
asymptotic dispersion coefficient, fractal models will
typically predict dispersion coefficients growing without
bounds.

While we have only presented three types of models,
other sub-scale geometric models have also been used in
the literature. These other structural models have usually
been used in the framework of large-scale Monte Carlo sim-
ulations, and have led to other theoretical results for aver-
aged flow and concentration distribution behavior, in the
absence of accompanying theories and analytical results.
For example, Kohlbecker et al. (2006) characterized flow
velocity distributions in fractal hydraulic conductivity fields.
Similar work on three-dimensional fractal fields was also
achieved by Doughty and Karasaki (2002). Benson et al.
(2006) and Monnig et al. (2008) have simulated solute trans-
port in anisotropic fractal hydraulic conductivity fields.
Several other studies have focused on dispersion of solutes
in heterogeneous fields created from indicator-based hydro-
facies models (Lu et al., 2002; Sivakumar et al., 2005;
Teles et al., 2004; Weissmann et al., 1999; Zappa et al.,
2006).

The estimation of the structural properties of the
hydraulic conductivity field requires that some a priori
information is available. Typically, point measurements of
hydraulic conductivity are available (Gomez-Hernàndez
et al., 1997). When pumping tests and tracer tests are per-
formed, inverse modeling can also be used to estimate the
spatial distribution of K (Carrera and Neuman, 1986; Cirpka
and Kitanidis, 2001; Harvey and Gorelick, 1995; Hendricks
et al., 2003). Geophysical methods or other a priori knowl-
edge can also be used in this framework, to constrain the
distribution of hydraulic conductivity values (Chen et al.,
2001; Hubbard and Rubin, 2000). If such data are available,
it is not likely that semi-analytical solutions for longitudinal
dispersivity are going to be used. Instead, numerical model-
ing using conditional or co-conditional realizations of the
hydraulic conductivity field is performed to simulate flow
and transport. In such conditional realizations, the uncer-
tainty in subsurface properties is highly reduced at measure-
ment locations, which can provide efficient constraints
when the solute plume only samples a small part of the
overall variability of the aquifer (i.e. in non-ergodic
situations).

From a very practical point of view, the most likely com-
mon application of the upscaling methods for longitudinal
dispersivity is the computation of block-effective values,
accounting for subgrid variability in numerical models (Ru-
bin et al., 1999). The typical scale of a numerical model
for groundwater flow and transport is of the order of several
tens to hundreds of square kilometers. Since most modelers
do not use high performance computer clusters, but use
personal computers, numerical grid cells have a size usually
comprised between 10 and 100 m. The steady improvement
in computer performance is not likely to yield a decrease in
numerical grid size. The current trend is indeed to increase
the complexity of the model, for example through a cou-
pling with a surface water model and/or a climate model
(e.g. Maxwell et al., 2007), rather than to improve the
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spatial discretization. The application of upscaling methods
for dispersivity at this scale is probably ideal since (1) it is
unlikely that the variability of subsurface properties is very
high at such scale, and (2) the corresponding correlation
length is likely to be much smaller than the block size while
source zones are typically larger, therefore ensuring ergodic
conditions.
Upscaled transport equations

The advection–dispersion equation is not a valid model
when concentration distributions are not Gaussian, which
may occur in highly heterogeneous situations and at inter-
mediate times (Jankovic et al., 2006). When the perme-
ability ranges over multiple orders of magnitude in the
same aquifer, diffusive processes dominate transport
through very low permeability zones, and upscaled trans-
port equations are needed to allow the modeling of the
resulting skewed concentration distributions. The emphasis
is put here on three categories of models. A first set of par-
tial differential equations (PDE’s) are obtained by aug-
menting the expression of the macroscale dispersive flux
to account for additional features of the transport prob-
lem. For example, non-Fickian expressions for qD can be
obtained by explicitly solving the effect of small-scale het-
erogeneity on transport. Analytical solutions can be ob-
tained in highly simplified situations, such as transport in
perfectly stratified aquifers (Berentsen et al., 2005; Gelhar
et al., 1979). Other approaches simply postulate non-Ficki-
an constitutive relationships for the dispersive flux (Strack,
1992; Tompson, 1988).

The second category of transport models, Continuous
Time Random Walk (CTRW) models are a generalization of
Brownian motion for particle movements correlated in time
or in space, that can yield fractional-order partial differen-
tial equations under specific conditions. Such models allow
apparent dispersivity to vary in time or in space and feature
skewed concentration distributions.

The third category of upscaled equations is commonly
referred to as mobile–immobile models (MIM). The heter-
ogeneous medium is divided into one mobile zone, where
solutes undergo advection, dispersion and diffusion, and
immobile zones, where advective transport is negligible.
The advection-dispersion equation is augmented by sink/
source terms accounting for mass transfer from/towards
immobile regions. Exchange between mobile and immobile
zones is quantified either using rate coefficients or using
diffusion models. Whereas this type of model was devel-
oped to account for long tails and slowly converging con-
centration distributions, effective dispersion coefficients
can be expressed in terms of MIM transport parameters
(Valocchi, 1985) and simulations based on field-scale data
showed that rate-limited models could correctly account
for observed scale-effects in apparent dispersion (Feehley
et al., 2000; Harvey and Gorelick, 2000). Although mult-
irate mass transfer models were shown to be mathemati-
cally equivalent to temporal CTRW (Cvetkovic and
Haggerty, 2002; Dentz and Berkowitz, 2003; Schumer
et al., 2003a), MIM models will be presented in a sepa-
rate section to preserve their specific mathematical
formulations.
Although we are actually dealing with large-scale aver-
aged concentrations (noted hCi in section ‘‘Upscaling meth-
ods for longitudinal dispersivity’’), the general notation C
will adopted for concentration throughout this section.

Higher-order PDE’s and telegraph equations

Historically, the first upscaling approaches were based on
volume-averaging and mixture theory techniques. These
were seen to complement the growing body of experimental
results on flow and transport in porous media by providing
theoretical links to fundamental results in hydrodynamics
and mass transport mechanisms. Intrinsically, these models
are not based upon any geometric model of the subscale
medium. Rather, they rely on the postulation of constitutive
relationships and their systematic simplification and param-
etrization to specific systems of interests. In this section,
we focus on models having a direct practical applicability,
i.e. models that can be formulated using simple partial dif-
ferential equations. We do not present them in a chronolog-
ical order, and we include in the review models based on
specific geometric models of heterogeneity. We start by
introducing higher-order PDE’s, and show how they can re-
duce to telegraph equations in certain situations. Then we
introduce two other models involving different telegraph
equations.

Berentsen (2003) and Berentsen et al. (2005) studied
solute transport in perfectly stratified media based on
the approach developed by Camacho (1993a,b,c) for lam-
inar flow between parallel plates. They obtained a non-
Fickian relaxation equation for the macrodispersive flux
using Fourier analysis to average the advection–dispersion
equation

qD ¼ �ser
2
v

oC

ox
� se

oqD

ot
� ð1þ caÞsev

oqD

ox
þ seD

d o2qD

ox2
ð30Þ

where se is an effective relaxation time characterizing expo-
nential degradation towards Fickian behavior. r2

v is the vari-
ance of the velocity profile and ca is linked to its skewness. Dd

is the effective molecular diffusion coefficient. As stated in
the introduction of this section, the notation C used here
actually refers to an averaged concentration, noted hCi in
previous sections. Incorporating (30) into the mass balance
equation (1) leads to a fourth-order transport model that
can account for molecular diffusion, macrodispersion
due to transverse mixing in non-uniform one-dimensional
flow fields and that can yield asymmetric concentration
distributions
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If the velocity distribution is symmetrical, ca is equal to
zero. When molecular diffusion can be neglected while a
significant transverse variation in the velocity field is pres-
ent, (31) reduces then to a second-order telegraph equation
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which was initially established by Scheidegger (1960) in a
more general framework. Analytical solutions of (32) are gi-
ven, e.g. by Berentsen (2003) and Scheidegger (1958). A
noticeable feature of (32) is that theoretical concentration
fronts have sharp cutoffs at tailing edges, which does not
necessarily fit experimental results.

Gelhar et al. (1979) also studied solute transport in a per-
fectly stratified aquifer. Using a stochastic approach, an
analytical solution for concentration fluctuations was ob-
tained, which could be injected in the governing equation
of the mean concentration. They truncated the latter to
the third-order term, which resulted in
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where a�L and cG can be computed from a geostatistical char-
acterization of the permeability profile. a�L is the macroscale
longitudinal dispersivity.

The advection–dispersion equation is a parabolic differ-
ential equation. No downstream condition is needed for
concentration whereas solute front velocity is theoretically
infinite. After a small time step, concentration at infinity is
non-zero. Regarding this physical inconsistency, Strack
(1992) proposed to include an inertia term in the constitu-
tive equation of the dispersive flux
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where kS is a parameter having the dimension of a length.
Strack (1992) found from experimental evidence kS to be in-
versely proportional to solute velocity. Incorporating this
expression into (1) leads to an equation slightly different
from the advection-dispersion equation and comparable to
(32)
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Analytical solutions of (35) are given by Strack (1992). As
for Scheidegger equation, theoretical solute fronts are char-
acterized by a sharp leading edge, with the difference that
late-time tails are smoothened. However, Strack (1992)
indicates that the first and second temporal moments of
(35) are similar to those of the advection-dispersion equa-
tion. Hence, Strack telegraph equation has no upscaling
capacities with respect to dispersion.

Tompson and Gray (1986) used a volumetric averaging
technique to derive large-scale balance equations. Their
work was further simplified by Tompson (1988), who derived
another relationship for the dispersive solute flux, the latter
being written in the one-dimensional case as
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Tompson (1988) also derived a transport telegraph equa-
tion, which can be shown to be a generalization of (32),
accounting for diffusion effects.
Hassanizadeh (1996) also used a volumetric averaging
technique to scale up microscopic flow and transport equa-
tions. Solute dispersive flux was described using physical
and chemical properties, such as chemical potentials or sol-
ute Helmholtz free energy. Hassanizadeh (1996) showed his
model to be a more general form of Scheidegger, Tompson
and Strack models. Most of other non-Fickian models are ob-
tained by similar flow and transport upscaling technique, as
reported from Whitaker by Peters and Smith (2000). Some of
them are evoked by Hassanizadeh (1996), Maas (1999),
Strack (1992), Tompson (1988), and Tompson and Gray
(1986).
CTRW and fractional-order PDE’s

The second category of model is based on the Continuous
Time Random Walk approach. Recently, Berkowitz et al.
(2006) have published a very detailed review of the applica-
tion of CTRW for modeling non-Fickian transport in geolog-
ical formations. Zhang et al. (2007b) have also recently
published a review of space-fractional advection–dispersion
equations, emphasizing on diverse available formulas,
numerical solutions and an application to the MADE site
data. In this section, we only present the basic aspects of
the method and refer to the original papers, while more
information and detailed applications of the method to field
and laboratory situations can be found in Berkowitz et al.’s
review (Berkowitz et al., 2006) and Zhang et al.’s paper
(Zhang et al., 2007b).
Probabilistic models for solute transport
CTRW are a generalization of ordinary random walks (where
the continuation of the walk occurs at discrete time steps)
(Berkowitz and Scher, 1995). In a heterogeneous medium,
solute particles are transported along different paths at
varying velocities. Under ergodic conditions, this kind of
transport can in general be represented using a coupled
time-space probability density function pðx; tÞ, describing
particle transitions in space (jumps of varying length) and
in time (waiting times between two successive jumps) (Ben-
son, 1998; Berkowitz and Scher, 1995; Metzler and Klafter,
2000). The jump length PDF is /ðxÞ ¼

R1
0 pðx; tÞdt and the

waiting time PDF is wðtÞ ¼
R1
�1 pðx; tÞdx.

The fundamental properties of transport are governed by
the asymptotic behavior of pðx; tÞ (Berkowitz et al., 2001).
Consider the case where jumps and waiting times are inde-
pendent, i.e. pðx; tÞ ¼ /ðxÞwðtÞ. The term asymptotic
behavior is used to refer to the long-distance (resp. long-
time) behavior. A common asymptotic form of /ðxÞ (resp.
wðtÞ) is the exponential decay (/ðxÞ ! expð�xÞ or
wðtÞ ! expð�tÞ). We define the ith statistical moment of
jump and waiting time distributions according to li

/ ¼R
xi/ðxÞdx and li

w ¼
R
tiwðtÞdt, respectively. Adoption of

exponential forms leads to all moments of /ðxÞ and wðtÞ
to be finite. In that case, according to the Central Limit The-
orem, solute concentration distributions will eventually be-
come Gaussian (Dentz and Berkowitz, 2003; Dentz et al.,
2004; Trefry et al., 2003). The limit process for particle
movement is then a Brownian motion governed by Fick’s
law (Baeumer et al., 2005). However, the movement of a
particle in an aquifer generally does not follow uncorrelated
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Brownian motion, since geological material is deposited in
sequenced and correlated units. A particle traveling faster
than the mean at some instant is much more likely to be still
traveling faster at later times, due to spatial correlation in
aquifer hydraulic conductivity (Benson et al., 2000b). This
also means that particles traveling at velocities significantly
different from the mean velocity may occur more often
than Brownian motion can model (Benson, 1998; Schumer
et al., 2001).

In the general CTRW framework, moving particles under-
go random transitions according to a probability density
function characterized by a different asymptotic form: the
marginal PDF of the spatial (resp. temporal) random incre-
ments decays algebraically (i.e. according to a power
law). This type of function is called a Lévy stable distribu-
tion, as they were first shown to exist by Paul Lévy (Lévy,
1937). For a PDF with tails falling off according to an alge-
braic-in-space decay /ðxÞ ! jxj�1�bx , the variance of the
jumps is infinite. In that case, transport is said to be spa-
tially anomalous. Similarly, for a PDF with tails falling off
according to an algebraic-in-time decay wðtÞ ! t�1�bt , the
variance of the pausing times is infinite and transport is said
to be temporally anomalous. bx and bt are positive numbers,
since the integral of the probability density function must
be finite. For bx P 2 and bt P 2, the first two spatial and
temporal moments of pðx; tÞ exist and particles exhibit
Gaussian behavior. If 1 < bx < 2, the second spatial moment
of pðx; tÞ diverges. Similarly, if 1 < bt < 2, its second tem-
poral moment diverges too. The cases bx < 1 and bt < 1 cor-
respond to infinite mean jump and infinite mean pausing
time, respectively.

For transport in heterogeneous media with highly con-
ductive layers or fractures, the distribution of jump lengths
is relatively broad, as particles may remain in low velocity
channels whereas other particles travel at a velocity much
higher than the mean. In that case, one could expect bx

to be lower than 2. Reciprocally, transport in a medium with
low permeability inclusions could be characterized by
bt < 2, as particles captured in inclusions exhibit signifi-
cantly longer pausing times (Meerschaert et al., 2002).

It must be noted that, in fact, bx and bt are functions of
the length scale (or the time needed to traverse this length
scale). The CTRW theory can be applied when bx or bt are
constant or slowly varying over a number of orders of mag-
nitude in length or in time (Margolin and Berkowitz, 2000).
Geological systems can encounter heterogeneities over dif-
ferent hierarchical scales, and the characteristic length of
the largest heterogeneity is likely to influence bx and bt

the most (Margolin and Berkowitz, 2000). However, this
largest heterogeneity must be small enough compared to
the full travel distance of the particle cloud, so that the
ergodic hypothesis is valid and probability distributions cor-
rectly approximate concentration distributions. If it is not
the case, then large heterogeneities must be treated deter-
ministically (Margolin and Berkowitz, 2000) or a characteris-
tic scale for the largest heterogeneity must be included in
the parametrization of pðx; tÞ (Dentz et al., 2004).

Mathematical formulations
First, we consider temporally anomalous transport (bx P 2
and 0 < bt < 2). We define the Laplace transform of the
waiting time PDF wðuÞ ¼LðwðtÞÞ. Physical considerations
limit the range of possible functional forms for wðuÞ. wðuÞ
must remain positive, normalized and bounded for all times
(Cortis et al., 2004). Moreover, for applications to real sys-
tems, wðuÞ and parameters values within it must be derived
from measurable properties of the medium, the flow field or
the tracer itself (Cortis et al., 2004). Dentz et al. (2004)
introduced a truncated power law model for wðuÞ

wðuÞ ¼ ð1þ s2ut1Þbt expðt1uÞ
Cð�bt; s

�1
2 þ t1uÞ

Cð�bt; s
�1
2 Þ

ð37Þ

where s2 ¼ t2=t1 and Cða; xÞ is the incomplete Gamma func-
tion (Abramowitz and Stegun, 1970). t1 and t2 have dimen-
sions of time. For t1 � t� t2, wðtÞ ! ðt=t1Þ�1�bt . In this
regime, transport behavior is anomalous (Cortis et al.,
2004). For t� t2, transport becomes Fickian for any bt.
The truncated power law model thus emphasizes the inter-
mediate range algebraic behavior and the characteristic
time scale for the largest heterogeneity discussed above.
A second functional form mentioned by Cortis et al.
(2004) is the modified exponential model, which only re-
quires one input parameter.

Another form described in the literature for wðuÞ is the
so-called asymptotic model (Cortis and Berkowitz, 2004;
Cortis et al., 2004; Margolin and Berkowitz, 2000, 2002,
2004)

wðuÞ ¼ 1þ auþ bubt
� 	�1

0 < bt < 2 ð38Þ

where a and b are two additional parameters. It corresponds
to the algebraic-in-time PDF model for waiting times. Cortis
and Berkowitz (2005) noted that not all combinations of val-
ues for bt, a and b are acceptable. A noticeable case is
0 < bt < 1, a ¼ 0 and b ¼ 1. It can be shown that a frac-
tional-in-time advection–dispersion equation can be ob-
tained for that combination of parameters (Berkowitz
et al., 2002; Cortis and Berkowitz, 2005; Metzler and Klaf-
ter, 2000). In the one-dimensional case, it reads
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where vb is a generalized velocity expressed in ½m=sbt � and
Dt is expressed in ½m2=sbt �. Introduction to fractional differ-
ential calculus can be found in textbooks (Kilbas et al.,
2006; Miller and Ross, 1993; Samko et al., 1993) and e.g.
in (Benson, 1998; Benson et al., 2000a; Cushman and Ginn,
2000; Schumer et al., 2001) and references therein. An easy
way to understand how fractional derivatives work is to ex-
tend the action of Fourier-transforms on integer derivatives
to rational order (Benson et al., 2000b)
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where r is a spatial or temporal coordinate, s is a Fourier-
coordinate and b is a rational number. By inverse-transform-
ing this equation, we can find one-dimensional expressions
for fractional derivatives. The main feature of these frac-
tional derivatives is that, unlike integer derivatives, they
are non-local operators and incorporate an integral from
�1 to r (Benson et al., 2000b). This can be interpreted as
a memory-effect (or as a correlation in time or in space of
particle displacement).
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We now consider spatial anomalous transport, with
bt P 2 and 0 < bx < 2. Benson (1998) and Benson et al.
(2000a) showed that describing the dispersive flux of solute
particles as proportional to a spatial fractional derivative al-
lows the magnitude of particle velocities (or the size of par-
ticle jumps) to be unconstrained. This is an extension of
Fick’s second law, where the variation of concentration in
time can be modeled using a fractional spatial derivative
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ð41Þ

where bx is the parameter of the Lévy probability density
function and Dx is a fractional longitudinal dispersion coef-
ficient, expressed in ½mbx=s�. If (41) is incorporated in the
mass balance, we obtain a fractional-in-space advection-
dispersion equation, which can be expressed in the one-
dimensional case as (Benson et al., 2000b)
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where cB is a skewness coefficient allowing forward jump
PDF to be different from backward jump PDF. A complete
derivation of this equation as well as useful analytical solu-
tions are provided by Benson (1998) and Benson et al.
(2000b). It can be easily checked that taking bx ¼ 2 yields
(3). As soil heterogeneity is captured by the parameter bx,
Dx may remain constant and does not need to be scale-
dependent anymore. In the multidimensional case, a multi-
scaling fractional operator was introduced to encompass
different scaling rates of dispersion in different directions
(Meerschaert et al., 1999; Meerschaert et al., 2001; Schu-
mer et al., 2003b). In that case, bx is no longer a scalar
but a tensor whose principal directions may not be aligned
with the principal directions of the flow field and whose
eigenvalues may not be equal in all directions.

Other fractional-order equations are also proposed in the
literature. Baeumer et al. (2001) proposed an equation sim-
ilar to (42) without skewness but with an advection term de-
scribed using a space-fractional derivative of order bx=2.
Equations with fractional temporal derivatives of an order
up to 2 have also been proposed (Baeumer et al., 2005; Ben-
son et al., 2004; Schumer et al., 2003b), as well as equa-
tions involving both time- and space-fractional derivatives
(Baeumer et al., 2005; Meerschaert et al., 2002; Metzler
and Klafter, 2000).
Dual-domain models

Early in the study of solute transport in porous media, it was
realized that a fraction of the fluid present in the pore space
of a medium could remain immobile (Coats and Smith, 1964;
van Genuchten and Wierenga, 1976). These immobile zones
could be either dead-end pores in a porous medium, the
rock matrix in a saturated fractured media or clay lenses.
Three different approaches can be adopted to account for
the influence of these immobile zones. First, an assumption
of local equilibrium can be invoked. It supposes that trans-
fer processes occur instantaneously. The second approach
uses diffusion to quantify exchange between mobile and
immobile zones. The third approach assumes first-order
rate-limited exchange, using models borrowed from non-
equilibrium chemical theories. In this section, we only focus
on rate-limited and diffusion models. Local equilibrium is an
asymptotic case of rate-limited transfer. More elaborate
models, accounting for two and more subdivisions of the
flow system and considering advection or not in each of
the subdivision were also developed (Gerke and van
Genuchten, 1993; Jarvis et al., 1991) but are not reviewed
here. A detailed comparison of such models is provided by
Simunek et al. (2003).

In the case of a two-region model, solutes are divided
into a mobile and an immobile region in soils. Solutes pres-
ent in the mobile zone undergo advection, diffusion and dis-
persion, while solutes present in the immobile zone only
undergo diffusion (i.e. flow velocity in the immobile zone
is assumed to be negligible compared to that in the mobile
zone). We define Cm and Cim the concentrations in the mo-
bile and the immobile phase, respectively. The ADE, as it in-
cludes advection and dispersion, is used to describe Cm. It
must be however augmented by a term expressing mass ex-
change with the stagnant zone. In the one-dimensional
case, it reads (Carrera et al., 1998; Coats and Smith,
1964; Haggerty and Gorelick, 1995; Schumer et al., 2003a)

oCm

ot
þ m

oCim

ot
¼ �vm

oCm

ox
þ DL;m

o2Cm

ox2
ð43Þ

where m ¼ him=hm is the capacity ratio, hm and him being the
volumetric fractions of mobile and immobile zones, respec-
tively. vm and DL;m are the velocity and the longitudinal dis-
persion coefficients in the mobile zone. As an additional
unknown appears in (43), an additional relationship is re-
quired to solve the problem. If the geometry of the immo-
bile zone is known, a one-dimensional diffusion model can
be defined. For example, van Genuchten et al. (1984) stud-
ied solute transport in a single cylindrical macropore
embedded in a low-porosity rock matrix, and compute Cim

according to

Cimðz; tÞ ¼
2

b2 � a2

Z b

a

rCaðz; r; tÞdr ð44Þ

where z is aligned in the direction of the macropore and r is
the radial distance from the center of the macropore. a is
the radius of the macropore and b is the radius of the immo-
bile domain surrounding the cylindrical macropore. Ca is the
local concentration in the immobile domain. Solute diffu-
sion in this part of the medium is described using a cylindri-
cal diffusion equation (van Genuchten et al., 1984)

oCa

ot
¼ Dd

r

o

or
r
oCa

or

� �
ð45Þ

where Dd is an effective diffusion coefficient. van Genuch-
ten et al. (1984) solved (43) using (44) and (45). Other
authors have solved similar systems for different geometries
of the mobile/immobile system (Brusseau, 1991; Carrera
et al., 1998; Haggerty and Gorelick, 1995; Hantush and
Marino, 1998a,b; Parker and Valocchi, 1986; Rao et al.,
1980).

On a technical level, a more convenient way to handle
mobile–immobile domain interactions comes from the
assumption of linear non-equilibrium mass transfer (Brus-
seau, 1991; Coats and Smith, 1964; Haggerty and Gorelick,
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1995; Schumer et al., 2003a; van Genuchten and Wagenet,
1989)

oCim

ot
¼ x Cm � Cimð Þ ð46Þ

where x is a first-order rate coefficient. An exhaustive set
of analytical solutions of the system (43) and (46) is given
by Toride et al. (1995). The non-dimensional number
Da ¼ xL=hmvm is the Damköhler number. It relates the rate
of exchange between mobile and immobile phases to advec-
tive velocity in the mobile phase. Defining the characteristic
times sx ¼ 1=x and sv ¼ L=hmvm, where L is a characteristic
length for advective transport, we have Da ¼ sv=sx. The lat-
ter expresses that the Damköhler number is the ratio of an
advective characteristic time scale to a characteristic time
scale for exchange with the immobile zone. For low Da,
sv � sx, exchange has no time to occur and transport be-
haves as if there were no immobile phase. For high Da,
sv � sx, concentrations in mobile and immobile phases have
time to reach local equilibrium and transport can be charac-
terized using an appropriate retardation factor (Bahr and
Rubin, 1987; Haggerty and Gorelick, 1995; Parker and Valoc-
chi, 1986; Valocchi, 1985).

The key issue is to estimate the exchange rate x. Approx-
imate apparent exchange rate coefficients can be derived
by comparison with diffusion models. x is then generally
found to be proportional to x 	 Dd=A2, A being a character-
istic lens size (Carrera et al., 1998; Haggerty and Gorelick,
1995; Zhang et al., 2007a). Other upscaling methods, such
as homogenization (Auriault and Lewandowska, 1995; Panfi-
lov, 2000) or volume-averaging (Cherblanc et al., 2003,
2006; Golfier et al., 2007; Moyne, 1996; Quintard et al.,
2001) allow keeping the coupling between micro-scale phys-
ics and macroscale parameters through some closure prob-
lems. The upscaling of exchange rate coefficients and
diffusion coefficients are however separate problems, be-
yond the scope of this review. The reader is referred to
the review by Cushman et al. (2002) for more details.

Although experimental results show an equivalence
between diffusionmodels and single-rate mass transfer mod-
els under simple flow and transport conditions (Nkedi-Kizza
et al., 1984), some authors are relatively mitigated regard-
ing the general applicability of single-rate models (Bajrach-
arya and Barry, 1997; Griffioen, 1998; Griffioen et al.,
1998). First, the single-rate model is not able to exactly
reproduce matrix diffusion (Carrera et al., 1998; Dentz
and Berkowitz, 2003; Haggerty and Gorelick, 1995). Then,
results from solute transport conducted are various scales
reveal that exchange rates are found to be scale-depen-
dent (Haggerty et al., 2004). This phenomena is typically
explained (1) by the presence of multiple timescales of
mass transfer (Haggerty and Gorelick, 1995; Haggerty
et al., 2004), (2) by slow advection (Guswa and Freyberg,
2000; Haggerty et al., 2004; Zinn et al., 2004), which re-
sults in concentration distributions having similar shapes
as if they were resulting from a mobile–immobile domain
interaction, and (3) by nonlinear hysteretic sorption (Hagg-
erty et al., 2004; Jaekel et al., 1996). It is also worth men-
tioning that stochastic extensions, similar to those
reported in this paper for the ADE, have been developed
for the single-rate MIM (Huang and Hu, 2000; Huang
et al., 2003).
Haggerty and Gorelick (1995) extended the single-rate
model to a multirate solute transport equation

oCm

ot
þ
XN
i¼1

mi
o Cimð Þi

ot
¼ �vm

oCm

ox
þ DL;m

o2Cm

ox2
ð47Þ

with N additional equations

o Cimð Þi
ot

¼ xi Cm � Cimð Þi
� �

i ¼ 1; . . . ;N ð48Þ

In this case, mi ¼ ðhimÞi=hm includes the volumetric pro-
portion of immobile zone i. In case xi are continuously dis-
tributed, the sum in (47) must be replaced by an integral
(Dentz and Berkowitz, 2003; Haggerty et al., 2000; Wang
et al., 2005). Haggerty and Gorelick (1995) demonstrated
the equivalence between diffusion and multirate models
by deriving a series solutions for xi and mi that could match
diffusion models.

In the case of single-rate exchange, (46) can also be ex-
pressed as (Schumer et al., 2003a)

oCim

ot
¼ fðtÞ � Cm þ fðtÞ Cmðx; 0Þ � Cimðx; 0Þð Þ ð49Þ

where fðtÞ ¼ xe�xt is a memory function and � denotes con-
volution. Haggerty et al. (2000) showed that the memory
function can take many forms, considering various diffusion
models or multirate exchange with various exchange rate
distributions. In the latter case, fðtÞ is a sum of exponential
functions, each corresponding to a single rate. Haggerty
et al. (2000) used the properties of the memory function
to discern between single rate and multirate transport by
considering the late-time behavior of breakthrough curves.
For single-rate exchange between mobile and immobile
zones, late-time behavior is governed by a single exponen-
tial in time, and the plot of logðCÞ versus time should be lin-
ear for t� hti. In the case of multirate mass transport,
late-time behavior is governed by a sum of exponentials,
that are actually equivalent to an algebraic (power-law)
tail. Therefore, the plot of logðCÞ versus logðtÞ should be lin-
ear for t� hti.
Application to the reference example

Third- or fourth-order PDE’s usually do not represent a valu-
able alternative to the classical advection–dispersion equa-
tion, mainly due to the difficulty to derive analytical or
numerical solutions. We therefore focus here on telegraph
equations, CTRW and fractional-order equations, and mo-
bile–immobile models. The main issue with upscaled trans-
port equations lies in the estimation of their parameters:
there are currently few methods available to link them with
the spatial structure of the subsurface. Curve-fitting is then
required to estimate parameter values from observed con-
centration distributions. In this section, we compare up-
scaled transport equations with the aid of the cumulative
mass arrival function Qðt; xÞ, or cumulative breakthrough
curve (BTC), at an arbitrary control plane at location x.
Qðt; xÞ is computed as the relative number of particles that
have already crossed the control plane at time t. We use
here three reference curves, observed at control planes lo-
cated 25k, 50k and 75k downstream of the injection zone,
respectively (Fig. 1c).
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The effective relaxation time se in Scheidegger telegraph
equation (32) can be estimated from the apparent longitudi-
nal dispersivity, which converges according to a single expo-
nential function with time (Berentsen, 2003)

a�LðtÞ ¼ a�Lð1Þ 1� expð� t

se

� �
ð50Þ

In the case of a perfectly stratified aquifer, Berentsen
(2003) showed that a�Lð1Þ ¼ r2

vse=hv1i, r2
v being the variance

of the velocity profile. We assumed that this result also
holds for three-dimensional situations in order to apply Ber-
entsen’s method. The variance of the velocity field is
r2
v ¼ 0:202 m2=d2 and r2

v ¼ 10:89 m2=d2 for case r2
Y ¼ 2 and

r2
Y ¼ 8, respectively. Fitting of (50) onto the time histories

of apparent dispersivity (shown in Figs. 5 and 6) yields
se ¼ 16:80 days and se ¼ 3:93 days for case r2

Y ¼ 2 and
r2
Y ¼ 8, respectively. Since the goal of using upscaled trans-

port equations is to characterize transport using scale-
invariant parameters, we also compare the results to BTC’s
computed from the ADE with local (microscopic) dispersivity
values (Fig. 7). This illustrates the level of error resulting
from the use of the ADE using transport parameters mea-
sured at a small scale (e.g. using column laboratory tests).
Scaling the longitudinal dispersivity according to (50) and
using the ADE do not yield BTC’s significantly different from
the solution of Scheidegger telegraph equation. This is a re-
sult of the Gaussian shape of the breakthrough curves and
highlights that the ADE combined with upscaling methods
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Figure 7 Comparison of cumulative breakthrough curves with Sche
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Figure 8 Comparison of cumulative breakthrough curves with tem
(Fit 2) analysis of BTC’s. Case r2

Y ¼ 2 (left), and case r2
Y ¼ 8 (right)
for dispersivity could also have been used to model concen-
tration distributions. In the high variance case, results are
of a lower quality, but exhibit similar trends. The practical
improvement of using Scheidegger telegraph equation
seems therefore relatively limited and only resides in the
reassuring use of scale-invariant parameters, as well as
maybe a better modeling of concentration distributions at
early times. The observed discrepancy between observed
BTC’s and theoretical models at larger distance probably
comes from an underestimation of the constant asymptotic
longitudinal dispersivity. Indeed, se is determined based on
early-time data (t < 486 days and t < 86 days, respectively
for the low-variance and the high-variance case). As ex-
pected, anomalous transport is more pronounced for case
r2
Y ¼ 8, since the BTC’s exhibit slow late-time convergence

to 1. This effect cannot be correctly modeled by Scheideg-
ger telegraph equation.

The Matlab CTRW toolbox (Cortis and Berkowitz, 2005) is
used to characterize BTC’s using temporally anomalous
transport models. The truncated power law model (37) is
used for the waiting time PDF. Two sets of fits are per-
formed. First, each of the three reference BTC is individu-
ally analyzed. A nearly perfect fit can be reached in most
situations (Fig. 8) but all parameters are found to be
scale-dependent (Table 3). For the case r2

Y ¼ 2, bt is close
or equal to 2, indicating that observed BTC’s have a Gauss-
ian shape, with few early arrivals and a rapid convergence.
This is consistent with the study by Trefry et al. (2003),
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idegger telegraph equation and with the classical ADE (with and
centered on observed data to avoid any additional shift caused
r2
Y ¼ 8 (right).
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Table 3 Fitted transport parameters for temporally and spatially anomalous models

r2
Y ¼ 2 r2

Y ¼ 8

Individual fits Individual fits

BTC1 BTC2 BTC3 Global fit BTC1 BTC2 BTC3 Global fit

Temb. anom
bt (–) 2.00 2.00 1.84 1.84 1.38 1.60 1.51 1.54
v (m/d) 0.48 0.50 0.54 0.57 2.09 1.63 1.80 1.69
aL(m) 3.86 8.19 9.98 7.95 6.32 24.3 31.8 23.2
t1 (d) 2.65 1.58 2.13 1.98 3.03 10.9 5.35 8.61

Spat. anom.
bx (–) 1.51 1.26
v (m/d) 0.49 0.50 0.47 0.48 1.38 1.38 1.20 1.32
Dx (mbx/d) 0.76 0.90 1.01 0.89 4.64 4.68 3.77 4.36
cB (–) �0.55 �0.44 �0.44 �0.48 �0.00 �0.01 �0.03 �0.01
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conducted on two-dimensional lognormal permeability
fields with r2

Y < 4: they used the fractional-in-time ADE
(39) and found bt values close to 1, indicating that concen-
tration distributions do not clearly exhibit a temporally
anomalous behavior. The overall quality of the fit is similar
to what could be obtained using the ADE and an upscaled
dispersivity value (see e.g. Fig. 7). For the case r2

Y ¼ 8, bt

is much lower than 2. If the parameters are still scale-
dependent, a significant improvement is observed in the
modeling of the tails of the BTC’s. This definitely suggests
that anomalous transport models are particularly suited to
model transport in highly heterogeneous three-dimensional
aquifers. Then, a single set of parameters is determined by
simultaneously analyzing the three reference BTC’s. We find
bt ¼ 1:84 and aL ¼ 7:95 m for case r2

Y ¼ 2, and bt ¼ 1:54 and
aL ¼ 23:2 m for case r2

Y ¼ 8. Although this approach does
not allow parameters to be scale-dependent, it appears that
resulting fits are still in a good agreement with the numer-
ical results. t2 in (37) was always found always larger than
105 days.

We turn now to spatially anomalous transport models. bx

is estimated based on the slope of a�L versus measurement
scale plotted on a log–log scaled graph (Benson, 1998).
We obtain here bx ¼ 1:51 and bx ¼ 1:26 for case r2

Y ¼ 2
and case r2

Y ¼ 8, respectively. Dx and cB are estimated by
fitting the solution of (42) onto early-time concentration
data (corresponding to relative concentrations below
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Figure 9 Comparison of cumulative breakthrough curves with spa
2) analysis of BTC’s. Case r2

Y ¼ 2 (left), and case r2
Y ¼ 8 (right).
84%). If the value of bx allows the modeling of the scale ef-
fect in apparent dispersivity, its value however yields hea-
vy-tailed concentrations distributions, which does not
match numerical results in both cases (Fig. 9). It appears
that Dx and cB are relatively scale-invariant (Table 3), and
taking a unique set of parameter (Fit 2 – computed as the
mean of each parameter) does not yield a significant
difference.

Finally, the single-rate mobile–immobile model is illus-
trated with the aid of the reference example. For spherical
inclusions, an approximate exchange rate is given by
x � p2Dd=A2 ¼ 1:92 10�5 days�1 (accounting for A ¼ 4k=3,
k being the correlation length characterizing the log-perme-
ability field) (Haggerty and Gorelick, 1995). hm can be esti-
mated by comparing the apparent velocity for each BTC
with the mean Darcy velocity vD of the aquifer. We obtain
hm ¼ 0:28, hm ¼ 0:27 and hm ¼ 0:29 for BTC1, BTC2 and
BTC3, respectively, for case r2

Y ¼ 2. For case r2
Y ¼ 8, we

have hm ¼ 0:29, hm ¼ 0:27 and hm ¼ 0:30 for BTC1, BTC2
and BTC3, respectively. The average values for the capacity
ratio are therefore m ¼ 0:43 and m ¼ 0:40 for the low- and
high-variance case. Using the local dispersivity with this
set of parameters does however not yield a good agreement
with observed BTC’s (Fit 1, Fig. 10). The only improvement
with respect to the ADE is the modeling of the discrepancy
between observed mean velocities and vD=h. The use of an
upscaled longitudinal dispersivity (obtained, e.g. from the
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Figure 10 Comparison of cumulative breakthrough curves with a single-rate mobile–immobile model. A priori prediction without
(Fit 1) and with (Fit 2) an upscaled longitudinal dispersivity. Case r2

Y ¼ 2 (left), and case r2
Y ¼ 8 (right).
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classical stochastic theory) however allows a satisfactory
matching of the three BTC’s (Fit 2, Fig. 10). Moreover, in
the high variance case, the long tails of the BTC’s are rea-
sonably predicted. Although we do not provide multirate
mass exchange models of the reference example under
investigation here, it is expected that these models would
significantly improve the observed limitations of the sin-
gle-rate first-order approach.

It appears that the quality of the results obtained here is
less homogeneous than when applying upscaling methods
for dispersivity. If reasonable fits of concentration distribu-
tions could be obtained using Scheidegger telegraph equa-
tion and temporal CTRW, the quality of the spatial CTRW
model was lower. MIM could not be applied using scale-
invariant transport parameters and therefore appear to be
of a more limited use in our particular reference examples.
However, the combined use of a single-rate MIM with up-
scaled values of longitudinal dispersivity allowed a good
match of observed concentration distributions, reconciling
the difference between mean aquifer velocity and mean
plume velocity. We can conclude therefrom that transport
mainly occurs in high- or medium-permeability zones of
the reference aquifer model, with very little interaction
with low-permeability zones, and that heterogeneity in
the mobile zone causes an increased longitudinal spreading
of the solute plume.

Further insights into upscaled transport models

In this section, only a small portion of the full literature on
upscaled equations for solute transport in the subsurface
was presented. For example, Cushman et al. (1994) and
Neuman (1993) have developed very general approaches,
of which several specific fractional advection–dispersion
equations are found to be particular cases (Zhang et al.,
2007a). We refer to the reviews by Cushman and Hu
(1995) and Cushman et al. (2002) for more details on these
other approaches. Similarly, we only briefly evoked volume-
averaging approaches and homogenization theory in this
work, and refer the reader to the reviews of Cushman
et al. (2002) and Berkowitz et al. (2006), and the book of
Whitaker (1999).

Replacing the classical advection–dispersion equation by
a telegraph equation was suggested a relatively long time
ago (Scheidegger, 1960). The fundamental issues underlying
the application of (32) to field situations are that (1) diffu-
sion is neglected, and (2) velocity distributions cannot be
skewed. This basically limits the applicability of this equa-
tion to situations in which the advection–dispersion equa-
tion could be used with an upscaled dispersion coefficient.
Although there is an increase in the complexity of the solu-
tion of (32) with respect to the ADE, the approach is more
elegant since the scale effect is intrinsically built-in.

The development and application of CTRW and fractional
ADE’s is currently a very active and evolving research area,
and these models are being applied to problem as varied as
transport of solutes in fractured media (Reeves et al.,
2008), transport of colloids (Cortis et al., 2006), or even
transport of emulsions in porous media (Cortis and Ghezze-
hei, 2007). However, a widespread use of these non-Fickian
models and the progressive abandonment of the ADE will re-
quire a drastic change in practitioners habits. This change is
not likely to happen as long as efficient numerical tools
adapted to field situations are not developed. The current
version of the CTRW toolbox allows for the modeling of
one- and two-dimensional problems in homogeneous do-
main, but plans for extension to heterogeneous fields exist
(Cortis and Berkowitz, 2005). Fractional ADE’s are currently
receiving more attention, since three-dimensional numeri-
cal codes adapted to solve field problems are being devel-
oped (Zhang et al., 2008). In field situations, it is also
likely that chemical processes will take place, and sorption
and chemical reactions have to be implemented in these
codes.

As for the stochastic upscaling methods of dispersivity,
some of the models presented here are adapted to situa-
tions where dispersion coefficients converge to constant
values, while other are preferably used in pre-ergodic situ-
ations. Scheidegger telegraph equation and the CTRW mod-
el with the truncated power law kernel function both
predict convergence to a constant asymptotic macrodisper-
sivity. Scheidegger telegraph equation includes a parame-
terization very similar to that of the upscaling methods
for longitudinal dispersivity. The relaxation time se could
be easily converted into a characteristic length using some
measure of the average velocity, while r2

v is an explicit
description of the variability of the velocity field. Similarly,
the CTRW model with a truncated power law kernel uses a
characteristic time to describe the transition to an asymp-
totic constant apparent dispersion coefficient. On the con-
trary, the space-fractional ADE typically predicts a
constant linear increase in apparent dispersion coefficients,
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similarly to the fractal extension of the stochastic theory.
There are actually underlying connections between the
fractal dimension of a heterogeneous medium, and the or-
der of the fractional Laplacian in (42). We refer to Kolwan-
kar and Gangal (1996), who elaborate on the explicit
connections between self-similar fractals and the fractional
derivative.
Summary and conclusion

In this paper, we focused on inert solute transport in satu-
rated heterogeneous media. Although we only focused on
longitudinal transport, two- or three-dimensional analytical
expressions are usually also reported in the literature for
the models presented.

A set of stochastic upscaling methods for longitudinal
dispersivity are first reviewed. Although differing from
each other, all these methods require a characterization
of the heterogeneity in terms of (1) an average permeabil-
ity contrast (i.e. a variance) and (2) a characteristic length
scale (finite or infinite). The average perturbation of the
velocity field resulting from heterogeneity is calculated
and converted into a macroscale dispersion coefficient.
Potential alternatives to the ADE are also reviewed.
Higher-order partial differential equations are not found
to be valuable options due to their increased complexity,
but telegraph equations could be more appropriate. CTRW
and fractional-order partial differential equations have
been recently brought to the field of hydrogeology and,
although requiring a relatively unusual mathematical for-
malism, they can also be more appropriate to model solute
transport. MIM are found to be a third class of transport
equations that can account for non-Fickian effects in dis-
persive processes.

We illustrated the application of the models using two
large three-dimensional numerical examples, solved using
MODFLOW 2000 and a particle-tracking software. We used
a single realization of a spatially correlated permeability
field, of which we varied the variance from r2

Y ¼ 2 to
r2
Y ¼ 8. Solute was released over a rather limited portion

of the synthetic aquifer, and traveled over a limited dis-
tance. The main implication for the application of upscaling
methods is that the plume only sampled a very limited por-
tion of the aquifer and did not experience the full variability
of the velocity field. Although these conditions are rather
non-ideal for the application of semi-analytical results as
presented in this paper, they are not unusual for a field sit-
uation. We emphasize that due to these limitations, the re-
sults reported here are mainly aimed at providing a
relatively qualitative framework for the comparison of the
methods and models, and their respective performances
must be seen as situation-dependent. A more rigorous study
would require some Monte Carlo analysis to address the
problem of limited ergodic conditions, and other models
for the structure of the permeability field should be
considered.

Analysis of the spatial moments of the solute plume
showed that apparent longitudinal dispersivity converged
to a value about 100 times larger than the local dispersivity
when r2

Y ¼ 2, and to about 400 times the local value when
r2
Y ¼ 8. Upscaling methods for longitudinal dispersivity all
allowed the prediction of the observed scale-effect within
a correct order of magnitude for the low-variance case. As
field variograms can be scattered, the results that we ob-
tained tend to show that a correct order of magnitude
should be reached in the prediction of asymptotic longitudi-
nal dispersivity by all analyzed models, as long as the main
trends in correlation are accounted for. In the high-variance
case, upscaling methods for longitudinal dispersivity yielded
less uniform results. Inclusion methods turned out to
produce close estimates of macrodispersivity. Provided
that an appropriate flow factor is adopted, classical sto-
chastic methods also yielded a reasonable prediction of
a�L. However, fractal methods did not provide satisfactory
results.

We also compared cumulative breakthrough curves eval-
uated at three reference control planes. In the low-variance
case, they were all found to have a Gaussian shape, with
few early arrivals and short late-time tails. Therefore, only
Scheidegger telegraph equation and temporal CTRW with
bt > 2 could allow the correct prediction of the apparent
spreading of concentration distributions without relying on
an upscaled dispersivity. The application of temporal CTRW
required a dispersivity about 40 times larger than the local
value and the space-FADE managed to predict apparent dis-
persivity at the expense of largely overestimated tails. The
single-rate MIM also required an upscaled longitudinal dis-
persivity but could reconcile the discrepancy between the
apparent plume velocity and the overall mean velocity of
the aquifer. In the high-variance case, we observed non-
Gaussian breakthrough curves, as a result of the velocity
distribution in the aquifer. In this particular case, temporal
CTRW were found to be the best models, although lower
constraints were imposed on their parameters. Spatially
anomalous models overestimated the tail of the BTC’s,
but we did not allow the main parameter bx to vary. We
emphasize that spatially anomalous transport models have
been successfully applied to other situations of solute trans-
port in heterogeneous aquifers (Benson et al., 2000b; Ben-
son et al., 2001). Multiple-rate mass exchange models
were not specifically investigated within the scope of the
reference example. They are believed to yield modeling re-
sults comparable to those obtained with the time-CTRW
model, since they are mathematically equivalent.

There are fundamental differences between the differ-
ent upscaling strategies reviewed in this paper. Some are
based on structural properties which are observable (at
least in principle) while other need to be fitted to concen-
tration data, having mainly descriptive power. Stochastic
upscaling methods for longitudinal dispersivity are relatively
commonly used, because the link between heterogeneity
and solute dispersion is explicitly accounted for. Moreover,
geostatistical methods have been used in the field for sev-
eral decades, and the characterization of aquifers in terms
of variance and correlation length is usually well mastered
by practitioners. On the contrary, upscaled transport mod-
els require an extended parametrization of the transport
problem that is not directly related to the cause of the scale
effect (i.e. heterogeneity). What is missing is precisely the
link between both approaches: further research efforts are
needed in order to establish the link between upscaling
methods and upscaled transport equations. As long as effec-
tive and reliable field methods are not developed for the
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characterization of upscaled models, it is unlikely that they
become widely used. In this framework, MIM’s and in partic-
ular multiple-rate MIM’s, are believed to be one of the most
promising upscaled models. It directly builds upon the clas-
sical ADE and can integrate any level of complexity by aug-
menting the number of exchange terms. MIM’s can be
combined with upscaling methods for dispersivity while
modeling anomalous transport resulting from diffusive mass
exchanges. With a proper parametrization of the velocity
and the mobile porosity, the presence of highly permeable
connected pathways can be accounted for as well.

Finally, if we applied each model to the reference exam-
ples in a rather systematic fashion, such an approach is not a
viable option for the practitioner. The choice of an appro-
priate model is typically case-dependent and should be
made by considering at least three important pieces of
information:

• First, as appearing from the reference examples, the
level of heterogeneity must play a role in the choice of
a conceptual transport model. In situations with a rela-
tively low level of heterogeneity, one should be tempted
to use stochastic theories and compute upscaled values
of dispersivity to be substituted in the advection–disper-
sion equation. Solving the ADE with time- or space-
dependent dispersion coefficients, either numerically
(Pickens and Grisak, 1981) or analytically (Aral and Liao,
1996; Huang et al., 1996; Hunt, 1998; Hunt, 2002; Logan,
1996; Pang and Hunt, 2001; Yates, 1990; Zou et al., 1996)
is another option. The third possibility is to use Scheideg-
ger telegraph equation. Although its mathematical for-
malism is slightly more elaborate than the ADE, it
intrinsically embodies the scale effect in apparent dis-
persivity. When permeability contrasts are higher (e.g.
r2
Y > 4), mobile–immobile models and CTRW should be

preferred, since they are able to handle diffusive trans-
port when it cannot be neglected compared to advective
transport.

• Then, the scale at which predictions have to be made,
compared to the characteristic length of heterogeneity
will also play a role in the choice of an adequate method.
If predictions have to be made at a small scale, anoma-
lous transport models should usually be preferred,
because concentration distributions are not likely to be
Gaussian. A fractal method could also be used to com-
pute apparent dispersion coefficients. If predictions are
made at a large scale and ergodic conditions are likely
to be met, models relying on the asymptotic long dis-
tance limit, such as the classical stochastic method,
inclusion models, or Scheidegger telegraph equation,
could be used with relative confidence.

• Finally, the type of available data (e.g. permeability,
head or concentration) is an important feature of the
(inverse) modeling problem. Upscaling methods for longi-
tudinal dispersivity are based on a parametrization of the
structure of the subsurface. No a priori information on
concentration distribution is needed to scale transport
up. On the contrary, upscaled transport equations almost
systematically require concentration data at the scale of
interest, and model parameters must be obtained by fit-
ting of the corresponding analytical solution onto
observed BTC’s.
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Section III (4), 277–284.
Lambot, S., Slob, E.C., van den Bosch, I., Stockbroeckx, B.,
Scheers, B., Vanclooster, M., 2004. Estimating soil electric
properties from monostatic ground-penetrating radar signal
inversion in the frequency domain. Water Resources Research
40. doi:10.1029/2003WR002095.

Lessoff, S.C., Dagan, G., 2001. Solute transport in heterogeneous
formations of bimodal conductivity distribution 2. Applications.
Water Resources Research 37 (3), 473–480.
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