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ABSTRACT: The objective of this paper is to model the lateral pile/soil behavior due to eccentric impacts in 
pile driving. A 1-D finite element model representing the pile is coupled to a 2-D radial discretisation of the 
surrounding soil. The pile is considered in the model as an Euler-Bernoulli vertical beam. Radial and 
tangential discretisations of the soil medium are proposed to model the soil reaction based on equilibrium 
equations in cylindrical coordinates. Both pile and soil vibrations are coupled in the time domain by 
calculating the lateral soil reaction at each time step. After the validation of the model, recorded bending 
moments form in-situ real cases due to eccentric impacts are applied in the model to study the flexural pile 
and lateral soil vibration. Finally, comparison of simulation and measurement show the practical usefulness of 
the model. 

1 INTRODUCTION 

High strain dynamic pile testing aims at evaluating 
the pile bearing capacity. It is nowadays a routinely 
used technique and several methods exist to process 
the measured signals in the field for a better 
extraction of the soil resistance. The Case method 
(Rausche et al, 1985, 2000), NUSUMS (Holeyman, 
1992) and CAPWAP (Rausche, 2000) are examples 
of programs dedicated to that purpose. The 
one-dimensional longitudinal wave equation coupled 
with Winkler soil reactions is the approach used in 
nearly all pile driving programs to model the pile 
axial behavior.  

However, several authors signaled the occurrence 
of flexural pile vibrations in Dynamic Loading Tests 
(DLTs). Poskitt (1992), Holeyman (2000) and 
Charue (2004) indicated that eccentricity of the mass 
ram relative to the neutral pile axis and pile 
inclination are reasons for the flexural vibration of 
piles in DLTs. It is also well observed in pile driving 
where extreme conditions may be reached. Poskitt 
(1991, 1992 and 1996) used an equivalent Smith’s 
(1960) soil reaction model to represent the lateral soil 
reaction. He used the Newtonian impact theory to 
model the eccentricity. No pile elasticity was taken 
into account and lateral soil reaction was treated by 
analogy to axial soil resistance (Winkler approach 
with Smith (1960) damping). No further 

developments have been encountered in the literature 
to properly model the lateral behavior under pile 
driving. The latter is much more complicated than 
the axial one. Furthermore, most of the developed 
solutions for lateral pile vibration are limited to 
harmonic loading (Novak and Nogami 1977, Nogami 
and Novak 1977, Novak et al 1978, Yao and Nogami 
1994, El Naggar and Novak 1995, El Naggar and 
Novak 1996, Chau and Yang 2005).     

 Since pile driving is an essentially transient 
problem, it is necessary in the authors’ opinion to 
create a specific model that can address the transient 
lateral behavior of both pile and soil during pile 
driving.  

In this paper, a numerical program is presented to 
model the transient lateral pile-soil interaction during 
pile driving. Measured bending moment in filed due 
to the eccentricity is introduced in the numerical 
program to study the lateral pile and soil vibration.  

A finite element program is first presented where 
pile bending is calculated using a vertical 
Euler-Bernoulli beam. Then we propose a continuum 
approach for the lateral soil reaction. The highly 
transient character of the test is easily incorporated in 
the pile and soil representation. The adopted 
approach is similar to that proposed by Holeyman 
(1984, 1994) for continuum modeling of axial shaft 
soil reaction. The pile finite element model is 
coupled in the time domain with the soil lateral 
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reaction. Numerical solutions and in-situ 
measurements (Allani and Holeyman, 2012) of 
flexural pile behavior are finally compared.     

2 PHYSICAL MODEL REPRESENTATION 

In this section we state the problem and the different 
physical aspects incorporated in the numerical 
analysis. The proposed problem deals with a pile 
foundation modeled as a vertical Euler-Bernoulli 
column partially embedded in the soil medium. The 
pile is subjected to an eccentric impact provided by a 
mass via a pile cushion at the pile head (Fig 1.a).  

 

    
   a)         b) 

Figure 1.  a) Eccentric pile driving b) Lateral pile movement 
and soil reaction. 
 

In fact, lateral pile movement due to the eccentric 
impact induces a dynamic lateral soil reaction. The 
pile is divided into a number of equal length 
elements to match soil layers (Fig 1.b).   

3 PILE FINITE ELEMENT 
FORMULATION 

3.1  Pile modeling: finite element formulation  
This section presents the formulation of the lateral 
pile behavior using Hamilton’s principle. The pile 
elements possess two nodes i and j; each node has 
three degrees of freedom, i.e. axial displacement, 
lateral displacement and rotation (Fig. 2). We define 

ev  as the lateral displacement element and e as the 
element rotation. Hermitian shape functions are used 
for the Euler-Bernoulli lateral pile vibration. 
However, for the axial finite element formulation, 
the conventional 1st polynomial order is used for the 
shape functions. Since in our case both axial and 
lateral vibrations are considered, pile element 
matrices have 6×6 size.  

       
      a)    b)  
Figure 2. 2-node element for a) lateral pile displacement b) 
axial pile displacement. 

The equation of pile motion in matrix form is writen 
as: 

        ][][][][ FUKUCUM    (1) 

where  U ,  U and  U  are pile displacement, 
velocity and acceleration vectors while ][F , ][M , 

][C and ][K  are force, mass, damping and stiffness 
matrices respectively.  

Step by step time integration is expressed in 
matrix form as: 
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where ttU   , tU  and ttU   are displacement at the 
time tt  , t  and tt   respectively with t  the 
time integration increment.  

In order to maintain numerical stability, the time 
increment should be small enough so that information 
does not travel faster than the compressive wave 
propagation velocity pc . This condition can be 
expressed, for a pile length element iL , as: 

p

i

c
L

t                                               (3) 

where ppp Ec /  is the bar velocity, pE and p  
are the pile Young modulus and pile density. 

The central difference explicit scheme is used to 
compute the pile vibration. The pile velocity and 
acceleration are expressed respectively as: 

t
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Although only the classical Euler-Bernoulli finite 
element formulation is presented in this paper for the 
lateral pile vibration, the program also incorporates 
the finite element formulation in accordance to the 
more extended Timoshenko beam theory. This 
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formulation is presented in detail in Allani and 
Holeyman (2010) and was inspired from Yokoyama 
(1996). That advantage of the program can be 
appreciated when dealing with “thick” piles 
characterized by large stubbiness ratio pg Lr / where 

ppg AIr /  is the radius of gyration of the pile and 
L is the pile length. The passage from Timoshenko 
beam theory to the Euler-Bernoulli is simple in the 
program: it is effected by setting the shear coefficient 
equal to zero and by neglecting the rotatory inertial 
terms (Yokoyama 1996, Przemieniecki 1985). 

3.2 Pile model validation under axial vibration 

A simple analytical model presented by Holeyman 
(1992) is used in this section to validate the axial 
finite element formulation (Fig. 3). The analytical 
solution models a semi-infinite pile head subjected 
an impact velocity gHVi 2 (where g is the 
gravitational acceleration and H is the impact height) 
and by a damping constant equal to the pile 
impedance: 

ppp AcI                                            (6) 

with pA the pile cross section. The ram has a mass m  
and the pile head cushion is represented by a 
spring k allowing both compression and tension.  

 
Figure 3. 1-D axial formulation (after Holeyman (1992)). 

Figure 4 shows the obtained contours of the 
maximum velocity ratio iVV /max  as a function of the 
cushion stiffness and the ram mass for a given pile 
impedance of I=1100 kN/ms-1. Thus, maximum force 
transmitted to the pile is calculated (velocity times 
impedance) and concrete damaging might be 
prevented by specifying the maximum strain range 

max using the relation:  

pc
Vmax

max                                            (7) 

Figure 5 shows the perfect superposition of the 
finite element results and the analytical solution for a 
ram mass equal to 4 tons, a cushion stiffness equal to  
2 MN/mm and for values of pile impedance: I=1100  
and 2500 kN/ms-1.  

 

Figure 4. iVV /max  ( L ) as function of ram mass and 
cushion stiffness ratios for H=40 cm and for I=1100 kN/ms-1. 
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Figure 5. Analytical and finite element solution of a semi-infinite 
pile. 

3.3 Pile model validation under lateral vibration 
Before incorporating the soil reaction into the model, 
it is necessary to validate the numerical results in 
lateral vibration using available analytical exact 
solutions. The problem of a simply supported beam 
was treated as a validation exercise. A modal 
analysis was performed to calculate the normalized 

frequencies
pp

ppp
nn IE

LA
f

4
 where n is the Eigen 

circular frequency for mode n. 
As shown in Table 1, the normalized calculated 

frequencies correspond exactly to the analytical ones 
(Nielsen,1991). 

 
Table1. Calculated normalized frequencies. 

Mode Calculated nf  Theoretical nf  
1 9.86 9.87 
2 39.47 39.48 
3 88.82 88.83 
4 157.92 157.91 
5 246.75 246.74 
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4 SOIL MODELLING  

4.1 Formulation of Lateral soil vibration   
The dynamic equilibrium conditions within a 
horizontal plane continuum assuming plane strain 
conditions can be expressed in terms of the radial 
and tangential soil displacements ( u ,v ) as follows: 
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where r  is the radial distance,   is the 
circumferential angle, while r ,   and  r  are 
the radial, tangential and shear stresses respectively. 

These stresses can be related to the displacement 
field thanks to classical Hooke’s relationships based 
on linear elasticity: 
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where   is Lame’s first parameter and rG  is the 
lateral shear modulus of the soil. 

Figure 6 shows the radial and tangential 
discretization of the soil continuum within a given 
horizontal layer. The pile slice of unit thickness is 
considered rigid in this section.  

 
Figure 6. Grid for lateral analysis.  

The pile displacement for each circumferential 
node (blue interface node) must be specified. The soil 
elements (black elements) are limited according to a 
2-D radial grid. The soil hollow slice is discretized 
according to a number of concentric radial circles 

rN (each circle i corresponds to a radial distance ir ) 
and according to a number of radial lines 

N representing the circumferential discretization 
(each line j corresponds an azimuthal angle 

j ).  
The grid increments for radial and tangential 

discretization are respectively r  and  . The mass 
belonging to each element is lumped at a node (green 
nodes) where soil acceleration, velocity and 
displacements are calculated. The mass of each soil 
element ),( jiM  is calculated by  rri  where 
 is the soil density.  

Strains and stresses have to be calculated between 
nodes as a result of their relative dispalcement and 
elastic constants. Using spatial finite differences, 
strains can be expressed at time step t+1 as a function 
of the soil displacement at time t ( tu and tv ): 
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Once strains are expressed at time t+1, stresses are 
calculated using Equations (10) through (12). Figure 
7(a) shows the different stresses around the lumped 
mass according to the grid discretization. By the 
projection of theses stresses on the radial r  and 
tangential   axes for each element (Fig. 7(b) ), 
radial and tangential equilibrium equations are used 
to compute radial ),( jia tt

r
  and tangential 

),( jia tt 
  acceleration of soil lumped masses at 

time t+1.   

 

(a)                            (b) 

Figure 7. (a) stresses around soil element  
          (b) Projection for force calculation 
 

Next, we use the central finite difference time 
integration (similar to Equations (4) and (5) ) to 
compute soil radial and tangential velocities and 
displacements at time t+1. The latter are 
reintroduced in Equations (13) to (15) to compute 
strains for the next time step. The whole numerical 
process is repeated during the considered time 
interval.  
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4.2 Validation of lateral soil vibration   

The soil radial discretization model can be validated 
by imposing a harmonic lateral displacement to a rigid 
pile disc (Fig. 8). We used for the validation a shear 
modulus G=1 MPa, a Poisson’s ratio 4.0 and soil 
density kg/m³ 1800 . An imposed displacement 
with 1 mm amplitude and 2rad/s 600  circular 
frequency is applied along a direction corresponding 
to the angle  0 .   
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Figure 8. Applied lateral displacement. 

The theoretical compressive (P-wave) velocity 
LV and shear wave (S-wave) velocity sV are 

calculated respectively as: 
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Contours of the radial and tangential 
displacements are presented in Figures 9 and 10. 
Close inspection of Figures 9 and 10 demonstrates 
that calculated P-wave (radial displacement 
for  0 ) and S-wave (tangential displacement 
for 2/  ) wave propagations correspond exactly 
to their respective theoretical values. 

 
Figure 9. Radial soil displacement [m] along radius  0 . 
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Figure 10. Tangential displacement [m] along 2/   
radius.  

Plane strain steady state solution of Novak’s et al 
(1978) is also compared to the proposed lumped model. 
Figures 11 and 12 show a great superposition of radial 
displacement (for  0 ) and tangential displacement 
(for 2/  ), respectively. 
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Figure 11. Comparison of analytical and numerical solution for 
radial displacement along  0 radius. 
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Figure 12: Comparison of analytical and numerical solution for 
tangential displacement along 2/   radius. 

5 COUPLED RESULTS OF PILE-SOIL 
MODELLING  

5.1 Coupling between pile and soil models 
Once the pile and soil vibration modes are validated, 
the coupling between pile and soil vibrations is 
effected through the calculation of the lateral soil 
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resistance at each time step. In fact, the soil lateral 
resistance is calculated per unit length of pile as: 

 


 
2

0

))sin(),,()cos(),,((),,( rdtrtrtzrP rr  (18) 

Equation (18) represents the lateral force at a 
certain radius r, depth z and time t. The lateral 
resulting force applied on pile is therefore: 

),,(),( 0 tzrPtzFlat                                 (19) 

The force calculated at the time t from Eq. (19) is 
further introduced in the pile finite element equation 
of motion (Eq. (1) ) for the time t+1. The same time 
integration increment is used for both pile and soil 
models.  

5.2 Comparison with in-situ measurements  
In order to see the practical use of the developed 
model, a series of eccentric pile dynamic tests were 
performed. For details on the pile testing 
experimental program, the reader can refer to Allani 
and Holeyman (2010, 2012). The pile has 
approximately a length of 10 m and a 0.35 m side 
square section. The elastic soil parameters as a 
function of depth are shows in Table 2. 
Table 2. Elastic soil parameter.  

 Layer N° rG (MPa)   
[0-3] m 58 0.4 
[3-7] m  90 0.4 
[6-12] 150 0.4 
 

 
The input loading introduced is the bending 

moment measured at the pile head with a view to 
compare simulations to experimental results. Figure 
13 shows the measured signals of bending moment 
for blows n° 4 and 5 along with the drop height H 
and ram eccentricity e with respect to the pile neutral 
axis. 
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Figure 13. Measured pile head moment. 
    

It was also possible to measure the pile head 
rotational rates under each impact, thanks to 

symmetrically placed accelerometers at the pile head. 
Figures 14 a) and b) show measured and calculated 
pile head rotation rates for impacts n° 4 and 5. It can 
be observed that simulations approximate well the 
measurement at the very beginning of the impact 
where they are in phase with the measurement and of 
same order of magnitude.  
  Although we obtained the same order of 
magnitude, measured rotation rate is more damped 
than the calculated one. This is due to the elastic 
analysis and also to the fact that no additional soil 
damping is introduced (analogous to Smith damping 
for axial analysis). 
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(b) 

Figure 14. Comparison of calculated and measured pile head 
rotation rates. 

5.3 Other important results and other future 
developments 

The model is also able to estimate the complete pile 
and soil lateral behavior. For instance, Figures 15 and 
16 show respectively the radial and tangential 
displacement distribution within a 5m deep soil layer 
at time t=30ms for the problem detailed in Section 
5.2. 

Maximum values of the calculated lateral pile 
displacement at the head are on the order of 1 to 2 mm. 
This value drastically decreases with depth to a value 
of about 0.01mm at the pile base. The lateral pile and 
soil displacements are also very important to closely 
investigate the importance of the eccentricity on the 
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axial pile vibration. In fact, in the authors’ opinion 
transient lateral pile displacement can affect the axial 
pile bearing capacity estimation. Coupling analyses 
between axial and lateral vibration modes can 
significantly improve the post-treatment measured 
signal in conventional pile driving and pile testing. 

 
Figure 15.:  Radial soil displacement around the pile at depth 
z=m and at time t=30ms for impact n°4. 

 
Figure 16. Tangential soil displacement around the pile at depth 
z=5m and at time t=30ms for impact n°4. 

6 CONCLUSION  

Lateral pile vibration during pile driving has been 
addressed by the coupled model suggested in this 
paper.  

The pile is represented by a vertical 
Euler-Bernoulli beam using finite element method. 
To properly represent the soil reaction, a continuum 
approach is used based on lateral 2-D finite 
difference equations. The pile and the soil reaction 
are coupled to obtain the whole system response. In 
the absence of developed numerical programs that 
estimate and investigate the flexural behavior of the 
pile in pile driving, the developed numerical program 
presents a very useful tool step toward that purpose.  

   Although elastic soil reaction is used herein, the 
model is versatile and can easily incorporate 
advanced constitutive law to represent the soil 
dynamic behavior (Kondner Hyperbolic law (1969), 
Elastoplastic, Hypoplastic law and so on). 

Coupling between axial and lateral pile vibration 
modes can be effected thanks to the developed 
programs. This will allow the determination of the 
flexural effects on the axial measurement and pile 
bearing capacity. 
  The Timoshenko beam theory is also implemented 
in the finite element pile formulation. This feature 
can be helpful for thick beams. Furthermore the 
benefits of eccentric impact could be explored more 
closely by using the Timoshenko beam theory to 
investigate the developed shear forces between the 
pile, cushion and mass (Allani and Holeyman 2010). 

REFERENCES 

Abramson H.N (1957). Flexural waves in elastic beams of 
circular cross section. The journal of Acoustical society of 
America V29, N°1, 42-46.   

Achenbach J.D (1980). Wave propagation in elastic solids. 
North Holland . 

Allani. M and Holeyman A. (2010). Non axial effects in 
dynamic pile testing: Pile vibration analysis using 
Timoshenko beam theory. Geotechnical Engineering 20, 
View of Young European Geotechnical Engineers, Brno, 
158-163. 

 Allani M and Holeyman A (2010). Signal analysis of axial and 
flexural behavior in high strain dynamic pile testing. 
Proceedings of the 2nd International conference on 
Geotechnical Engineering, Hammamet, Tunisia, 477-486. 

Allani M and Holeyman A (2012). Flexural behavior of pile in 
high strain dynamic pile testing. Submitted to the 9th 
International Conference on testing and Design Methods 
for Deep Foundation. IS-Kanazawa. Japan. 

Charue N (2004), Loading rate effects on pile 
load-displacement behavior derived from back calculation 
analysis of two load testing procedure. 

Chau KT, Yang X. (2005). Nonlinear interaction of soil-pile in 
horizontal vibration. Journal of Engineering Mechanics 
ACSE. 847:858-131(8). 

El Naggar M. H, Novak M. (1995). Nonlinear lateral interaction 
in pile dynamics, Soil dynamics and earthquake 
engineering; 141:157-14. 

El Naggar MH, Novak M. (1996).Nonlinear analysis for 
dynamic lateral pile response. Soil dynamics and 
earthquake engineering. 223:244-15(4). 

Goble G G. (2000). Keynote lecture: some wave mechanics 
applications. Application of Stress waves theory to piles.  

Holeyman A. E. (1984). Contribution à l’étude du 
comportement transitoire non-lineaire des pieux pendant 
leur battage. Thesis dissertation. Université Libre de 
Bruxelles (ULB), 584p. 

Holeyman A. E. (1992). Keynote lecture: Technology of pile 
dynamics. Proceedings of the fourth international 
conference on the application of stress wave theory to 
piles. 195-215. A.A Balkema, Rotterdam, Netherlands.  

Holeyman. A, Legrand. C (1994). Soil modeling for pile 
vibratory driving. International Conference on Design and 
Construction of Deep Foundation, Orlando. 1165-1178(2). 

399



Holeyman A.E (2000), Keynote lecture: Technology of Pile 
dynamics, Application of Stress waves theory to piles, 
195-215. 

Ishihara K. (1996). Soil behaviour in earthquake geotechnics. 
Oxford Clarendon Press;  

Kondner R.L (1963), Hyperbolic stress strain response: 
cohesive soils. Journal of soil Mechanics and Foundations 
Division. 115:143-89. 

Nielsen J.C.O (1991). Eigenfrequencies and eigenmodes for 
beam structures on an elastic foundation. Journal of sound 
and vibration; 145(3): 479-487. 

Nogami T, Novak M. (1977). Resistance of soil to a 
horizontally vibrating pile. Earthquake Engineering and 
Structural Dynamics. 249:261-5. 

Novak M, Nogami T, Aboul-ella F. (1978). Dynamic soil 
reactions for plane strain case. Journal of Mechanical 
Engineering Div ASCE; 953:959-104 

Novak M. (1977). Vertical vibration of floating piles. Journal of 
Engineering Mechanics Division; 153:168-103(1). 

Novak M. (1974).  Dynamic Stiffness and Damping of Piles. 
Canadian Geotechnical Journal, 574:598-11(4) 

Novak. M and Sheta. (1980). M. Approximate approach to 
contact effects of piles. Proc of Dynamic response of pile 
found: Analytical aspects ASCE . New York, N.Y 53-79. 

Novak M, Nogami T. (1977). Soil-pile interaction in horizontal 
vibration. Earthquake Engineering and Structural 
Dynamics; 263:281-5. 

Poskitt T.J. (1991). Energy loses in pile driving due to soil rate 
effects and hammer misalignment. Proceedings Institution 
of Civil Engineers; 823:851-91.  

Poskitt T.J. (1992). Keynote lecture: problems of reconciling 
stress wave measurements with theory. Proceedings of the 
fourth international conference on the application of stress 
wave theory to piles, 495-507. A.A BALKEMA, 
Rotterdam, Netherlands. 

Poskitt T.J. (1996). The deflection of piles during driving. 
Géotechnique, 46 (2), 235 –243       

Rausche F, Goble G.G, Likins G.E. (1985) Dynamic 
determination of pile capacity, Journal of geotechnical 
Engineering, 11, 367-383. 

Przemieniecki J.S.(1985).  Theory of matrix structural theory. 
Dover Publications.  

Rauche F. (2000). Keynote lecture: pile driving equipment: 
Capabilities and properties Application of Stress waves 
theory to piles. 

Smith, E.A.L. (1960). Pile driving analysis by the wave Equation. 
Journal of soil mechanics and foundation division.(ASCE). 
6(4), 35-61. 

Yao S and Nogami T (1994). Lateral cyclic response on pile in 
viscoelastic Winkler subgrade. Journal of engeneering 
mechanics 120, 758-775. 

Yokoyama T (1996), vibration analysis of Timoshenko 
beam-column on two-parameter elastic foundation, 
Computers and Structure 995-107. 

VanAlboom G, and Whenham V. (2003). Soil investigation 
campaign at Limelette (Belgium) Results. In Proceeding 
of the Symposium on screw piles in sand. Design and 
recent development Swts and Zeitlinger, Eds. 

400




