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Influence of an impedance change on SRD computation by the Case 
Method 

de Chaunac, H. & Holeyman, A. 
Université catholique de Louvain (UCL), Belgium 

Keywords: Case Method, dynamic testing, soil resistance to driving, impedance, wave equation  

ABSTRACT: Used during pile driving, the Case Method offers an immediate estimate of the soil resistance to 
driving (SRD) after each hammer blow. Although it is over 40 years old, it is still widely used in its original 
form in the offshore piling industry. Indeed, the estimated SRD, corrected for set-up effects, provides an 
indication of the pile static capacity. The Case Method requires measurements of force and velocity near the 
pile head as the hammer strikes the pile and produces an analytical form of the SRD, using a number of 
assumptions. One of them requires the pile to be of constant impedance (or cross section) across its length. 
Offshore driven steel pipe piles are usually very long and therefore composed of several pieces of different 
cross sections. Furthermore, the welding of these pieces also produces local variations of impedance of the 
pile. In this context, an improved version of the original Case Method is suggested to take into account a 
possible variation of impedance along the pile. 
 
 
1 INTRODUCTION 

The numerical application of the wave equation 
theory to a pile subjected to an impact (during 
driving or dynamic load testing) was introduced by 
Smith (1960) and is still vastly used nowadays 
(Holeyman 1992, Rausche et al. 2008). 

The main assumption behind the classic wave 
equation analysis is that the pile is considered as a 
one-dimensional unconstrained rod.  The impact of 
the hammer on the pile head creates a downward 
stress wave that propagates through the pile. For a 
pile behaving elastically, the waves generated by the 
application of a sudden axial force are axial body 
waves which follow the 1D wave equation: 

 
  

(1) 

 
where u = displacement function (downward 
positive), t = time, z = position (downward positive) 
and c = wave propagation speed, which is given by: 

 
  

(2) 

 
where E = Young modulus of the pile and   = its 
density. 

The solution of the wave equation (Eq. (1)) is the 
sum of downward and upward waves travelling at 
constant celerity c. These waves are described by Eq. 
(1) in terms of displacement but induce 
corresponding forces and velocities within the rod 
(Timoshenko and Goodier, 1970). The velocity (v) 
and force (F) waves at any given pile section upon 
arrival of the displacement wave can also be split 
into their downward (d) and upward (u) travelling 
components, i.e.: 

 
 

ud FFF   (3) 
 
The normal forces are positive when compressive 

whereas velocities at any given cross section upon 
passage of the wave are positive downwards. 
Equilibrium conditions account for the normal force 
orientation relative to the boundary they are applied 
to. 

The wave equation (Eq. (1)) is obtained by 
considering a pile without any external force acting 
on it. Nevertheless, in order to correctly describe the 
pile driving problem, shaft friction and base 
resistance have to be taken into account. Induced by 
pile movement, these soil reactions attenuate the 
descending initial wave and produce upward 
travelling waves. Soil resistance is usually modelled 
by considering a finite number of equally spaced 
forces along the pile. This simplification is also used 
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in order to establish the Case Method, as discussed 
in Section 3. 

Two relationships that will be used in the 
following sections are now introduced. From Eq. (1), 
we can obtain relationships between the force and 
the velocity, respectively, of a wave travelling down 
the pile and of a wave travelling up the pile: 

 
  (4a) 

(4b) 
 

with the pile impedance being defined by the 
following equation: 

 
  

(5) 

 
where A = pile cross-sectional area. 

Equations (4a) and (4b) express that when a 
single wave travels down the pile, force dF  and 
velocity dv  are proportional and have the same 
sign. On the other hand, when a single wave travels 
up the pile, force uF  and velocity uv  are 
proportional and have opposite signs. 

A second set of relationships allows us to 
evaluate the upward and downward force wave from 
the measurable force and velocity at a given section 
along the pile: 

 
 

(6) 

2 SOIL RESISTANCE TO DRIVING 

Figure 1 schematizes the evolution of the static 
resistance of a pile before, during and after driving a 
given segment m. The pile is being redriven and 
already has some static capacity from being 
embedded in the soil. During the driving, 
i.e. between the beginning of redrive (BOR) and the 
end of driving (EOD), the static resistance decreases 
due to degradation of the soil surrounding the pile 
(e.g. in saturated soils, the degradation mainly 
results from the pore pressure build up). After a 
given number of blows, an asymptotic trend emerges 
in the form of an endurance limit, namely the “soil 
resistance during continuous driving” (SRCD).  

Once the driving stops, a restoration process 
begins which is known as “soil setup”. The pile 
capacity, if not redriven, will eventually reach the 
long term static soil resistance (SSR; Rausche and 
Hussein, 1999). 

The static resistance developed by the pile during 
driving is called the soil resistance to driving (SRD). 

Furthermore, the velocity imposed by the driving 
adds a “dynamic” term to the SRD. 

The terms described above are not always 
univocally named in the literature. In this paper, the 
following definitions will be used: the displacement 
(respectfully velocity) induced resistance will be 
called the static (respectfully damping) resistance 
while the sum of the static and damping resistance 
will be named the total resistance. 

 
 

 

Figure 1.  Evolution of the resistance offered by the soil with 
respect to time during two driving sequences. 

 
 
The wave equation analysis enables us to assess 

the pile resistance by processing force and velocity 
signal measured at the pile head during driving. 

Two particularities arise from using the data 
measured during pile driving. Firstly, the separation 
of the static and damping parts of the total resistance 
has to be carefully made to extract the static soil 
resistance (SRD). Secondly, the moment chosen to 
estimate the SRD is of paramount importance. The 
SRD computation using data from a blow following 
a long setup period will produce a closer value to the 
actual pile capacity, as it can be seen on Fig. 1. 

3 THE ORIGINAL CASE METHOD AND ITS 
ASSUMPTIONS 

The Case Method is an analytical formula which 
provides an estimate of the SRD based on force and 
velocity measurements at the pile top during an 
impact. 

We consider a pile of length L. The force and 
velocity induced by the wave at depth z and time t 
will be noted, respectively, ),( tzF  and ),( tzv . 

In order to set up the Case Method, Rausche et al. 
(1985) firstly assumed that forces in the form of soil 
resistances were concentrated at a finite number of 
locations along the pile. These resistive forces 
consist of a displacement dependent (static) part and 
a velocity dependent (damping) part. The static 
resistances follow an ideal rigid plastic behaviour. 
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The damping resistances follow the Smith (1960) 
shaft reaction model with the assumption that they 
solely depend on the toe velocity ),( tLv  at the time 
the wave initiated at 0t  arrives at the pile toe (at 

cLtt /0  ), so the damping resistance can be 
expressed as follow: 

 
  (7) 

 
where cj = Case damping factor. The static 
resistance sR  expressed by Rausche et al. (1985) is 
the SRD. 

Furthermore, the assumptions made by the Case 
Method promotors can actually be boiled down to 
the following stricter ones: 

 The pile is considered as an elastic rod and the 
hammer blow axial, 

 A soil resistance at depth *z  is activated at least 
at both times czt /*

0   and czLt /)2( *
0   

(for a rigid plastic behaviour, this assumption is 
usually encapsulated into a more demanding 
assumption, namely: the pile has to keep moving 
down during the time interval cL /2 ), 

 The pile cross sectional area is uniform along the 
pile length. 

 
 

 

Figure 2.  Pile subjected to a force boundary condition 
)(),0( 00 ttFd  . For purposes of clarity, there is 

only one application level )*(z  of the shaft 
resistance shaftR . 

 
 
As suggested by Salgado (2008), the setting up of 

the Case formula can be alternatively demonstrated 
in two steps. Let us suppose that the force wave 
induced by the hammer blow at pile head at 
time 0tt   is )(),0( 00 ttFd  . Firstly, the 
expression of the upward force wave at the pile head 
at time cLt /20   gives an expression of the total 
resistance (Fig. 2): 

 
 (8) 

 
It can be noted that resistance is positive in the 

upward direction. The second step consists in 
expressing the equilibrium of forces of an 
infinitesimal slice of the pile at its toe at the moment 
the wave generated by the hammer blow arrives (at 

cLtt /0  , Fig. 3). Upon reaching the pile toe, the 
upward force wave must fulfil the vertical 
equilibrium condition: 

 
 

(9) 

 
Using Eqs. (3), (4) and (9), the particle velocity 

pile at pile toe is given by: 
 

 

(10) 

 
 

 
 

Figure 3. Forces acting the pile toe at time cLt /0  : the base 
resistance baseR  and the forces dF  and uF  
respectively created by the downward and reflected 
upward moving waves. 

 
 
Using Eqs. (8), (10) and (7) yields a formulation 

of the SRD in function of measurements acquired at 
the pile head at times 0t  and cLt /20  , which is 
known as the Case formula: 

 
 

(11) 

 
Eq. (11) is usually expressed in terms of force 

and velocity at the pile head by using Eqs. (6). 

4 A MODIFIED CASE METHOD FOR PILES 
OF VARYING IMPEDANCE 

One of the assumptions of the original Case Method 
consists in having a constant impedance along the 
pile (uniform cross section and one material 
composing the pile). The following sections propose 
a modified Case formula that takes into account the 
possible changes of impedance along the pile. 
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4.1 Wave modifications upon encountering a 
change of impedance 

When a wave travelling along the pile encounters an 
abrupt change of impedance (Fig. 4), part of the 
incoming wave (i) is reflected (r) and part of the 
wave is transmitted (t). In order to quantify these 
two parts, the impedance ratio kkk IIi /1  is 
introduced, where 1kI  and kI  are the impedances 
of the pile respectively above and below the k-th 
impedance change. The impedance itself is defined 
in Eq. (5). 

 
 

  

(a) (b) 
Figure 4.  Incident (i), reflected (r) and transmitted (t) waves 

when coming across an impedance discontinuity. 
 
 
At the impedance discontinuity, the compatibility 

of displacements and the axial equilibrium must be 
satisfied, yielding the transmission and reflection 
coefficients relative to the incoming wave. For a 
downward force wave (Fig. 4a), the amplitude of the 
reflected and transmitted force waves are given by: 

 
  

(12) 

 
And for an upward incoming wave (Fig. 4b), 

these are: 
 

  
(13) 

 
For the modified Case formula and for n 

impedance changes, the definition of the Case 
damping factor cj  (Eq. 7 for the original formula) 
needs to be slightly tuned: 

 
  (14) 

 
where nI  is the impedance after the n-th impedance 
change (i.e. the impedance of the pile toe). 

 

4.2 Modified Case Method 
The development of the suggested modified Case 
Method is presented herein for a pile with one 

impedance change ( 1n ) at depth szz   (Fig. 5). 
To keep notations concise, the impedance ratio 1i  
will be noted i. 

In order to produce an analytically accessible 
form of the SRD, the following assumption is made: 
all of the pile resistance is lumped at its toe, thus 

bRR  . 
The modified Case formula is obtained by 

applying the same two steps used in Section 3. The 
expression of the upward force wave at the pile head 
at cLt /20   yields: 

 
 

(15) 

 
where st  = time at which originated the wave 
arriving at the pile top after reflecting against the 
impedance change at point szz   (Fig. 5). 
 
 

 

Figure 5.  Force waves arriving at time cLt /20   at pile 
head for a pile with one impedance change at 

szz  . 
 
 

Secondly, the velocity at pile base after the wave 
initiated at 0t  has time to arrive can be expressed as 
follows: 

 
 

(16) 

 
As for the original Case formula, the estimated 

SRD is obtained by using Eqs. (15), (16) and (14): 
 

 

(17) 

 
Eq. (17) is the modified Case formula for one 

impedance change (characterized by the impedance 
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ratio i) allowing to estimate the SRD from force and 
velocity measurements at the pile head (using Eqs. 
6) at times 0t , st  and cLt /20  . 

The case of n impedance changes has been 
addressed in De Chaunac and Domange (2011) and 
is undergoing refinement towards another 
publication. 

5 INFLUENCE OF LUMPING THE 
RESISTANCE TO THE TOE 

Let us consider a pile with one impedance change 
and with one resistive force shaftR  which is located 
above the impedance change. If the toe lumping 
assumption is used, the effect of shaftR  at pile head 
at time cLt /20   is: 
 

  
(18) 

 
If the toe lumping assumption is not used, the 

influence of the shaft resistance at pile head is: 
 

  
(19) 

 
By comparing these two expressions, the error 

made by taking the toe lumping assumption varies 
from -15% to +20% for impedance ratios i ranging 
from 0.5 to 2. 

6 PARAMETRIC STUDY: INFLUENCE OF 
THE DEPTH OF THE IMPEDANCE CHANGE 

The following section presents a numerical 
parametric study that compares results obtained with 
the original Case Method and the modified one. The 
numerical tool used was created by the authors using 
Matlab. The program solves the wave equation in an 
unconstrained rod by the method of characteristics 
and allows imposing impedance changes and 
resistive forces along the pile. The models used for 
the resistive forces are consistent with the Case 
Method hypothesises, i.e. the resistive forces are 
activated once the wave arrives at their level 
( czt /*

0  ) and until the wave reflected at pile toe 
passes through again (i.e. at time czLt /)2( *

0  ). 
The details of the numerical program can be found 
in De Chaunac and Domange (2011). 

In order to provide a certain amount of realism, 
(a) the pile used in the modelling has characteristics 
of a typical offshore steel pipe pile (specifications of 
the pile and of the driving equipment are given in 
Table 1) and (b) the force boundary condition 
imposed at the pile head is an analytical function of 
the force imposed by a hammer blow on a 

semi-infinite pile. A graphical output of the 
numerical program is provided in Fig. 6 for a free 
pile with only one impedance change at depth 

m 50sz . 
 
 

 

Figure 6. Upward and downward force wave computed at pile 
head. The pile characteristics are given in Table 1. 
No resistive force and one impedance change (i=2) 
at m 50sz . 

 
 
First of all, the two methods were compared on a 

pile of constant impedance (i=1). The results of the 
two methods were identical. 

Then, one impedance change was imposed on the 
pile. The results are given as functions of the 
coordinate of the impedance change in Fig. 7 for 

0cj . When only base resistance is allocated to the 
pile ( 0)/(  baseshaftshaftF RRR ), thus respecting 
the assumption of the modified Case Method), the 
error committed by the modified Case Method is 
less than 1%. In comparison, the error generated by 
the original Case Method ranges from -30% to 
+60% (Fig. 7a). 

Fig. 7b shows the results for a pile with 5 MN of 
toe resistance and 5 MN of evenly distributed shaft 
friction ( 5.0F ). Here again, in spite of the 
resistance toe lumping assumption, the modified 
Case Method provides a far better estimate of the 
static capacity than the original method. 
 

 
Table 1. Specifications of the pile model and driving system. 

Modulus of elasticity E  200 GPa 
Density   7850 kg/m² 
Cross section A  1000 cm² 
Length L  200 m 
Pile impedance (at head) 0I  3.962 MNs/m 
 cL /2  79.250 ms 
Stiffness of the pile cap k  1000 MN/m 
Hammer mass M  0.100 Mkg 
Time of wave max amplitude 0t  9.600 ms 
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(a) (b) 
Figure 7.  Error of the original and modified Case Methods with respect to the depth of the impedance change, with 2i , 0cj , 

base resistance: 5 MN and shaft resistance: (a) 0 MN, 0F , (b) 5 MN spread equally across the pile length, 
5.0F . 

 
 

7 CONCLUSION 

This paper presents a modified version of the Case 
Method, maintaining an analytical estimation of 
the pile static resistance using force and velocity 
measurements at the pile head during a dynamic 
loading. The presented modified version takes into 
account a possible impedance change along the 
pile. 

Even though a supplementary assumption had 
to be made (lumping all resistance at pile toe) to 
produce an analytically acceptable result for the 
modified Case Method, good results, in 
comparison with the original Case Method, were 
obtained in the numerical simulation. 

The modified Case Method conserves the key 
advantage of the original Method: it remains an 
analytical and immediate estimation of the static 
resistance of the pile and can thus be used directly 
after each hammer blow. 

However, both methods require radical 
assumptions to produce their results. Two of them 
are subject to question: all damping effects are 
lumped into the Case damping constant cj  and the 
downward movement of the pile assumption may 
be a poor bet for long piles. 
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