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ABSTRACT: This paper presents a new model to analyze the nonlinear interaction between a vertical 
cylindrical pile subjected to lateral harmonic loading and its embedment soil. The pile toe is either pinned or 
clamped to idealize its support on bedrock. The soil mass is decomposed into an inner soil zone around the 
pile where soil nonlinearity is portrayed by a hyperbolic model and a linearly elastic outer soil zone. A 
numerical solution is obtained using the finite difference method. The results obtained by the suggested 
approach are then compared with those derived from an analytical approach developed by Nogami and Novak 
(1977).  

1 INTRODUCTION 

Pile Foundations are used for a variety of civil and 
geotechnical engineering purposes. The forces on 
these structures consist of vertical loads due to self 
weight of the superstructure and lateral loads. The 
latter can be produced by machines, wind, 
earthquake, ships, wave loads and result in eccentric 
loading. Numerous studies have been performed to 
determine of the response of a soil-pile system to 
harmonic lateral loading. In fact, dynamic soil-pile 
interaction under lateral loading is a very complex 
problem and linear elastic behavior of soils has been 
considered in earlier studies to simplify the problem. 
Some linear analytical studies have been proposed 
by a. o. Novak and Nogami (1977). Many other 
researchers including El Naggar and Novak (1995), 
Badoni and Markis (1995), Chau and Yang (2005) 
have investigated the dynamic response of a single 
pile assuming nonlinear behavior of soil. 

In this paper, on the one hand, the analytical 
solution suggested by Novak and Nogami (assuming 
a linear elastic behavior of the soil) is examined 
using a parametric study in order to investigate the 
impact of some parameters on the response of the 
soil-pile system. On the other hand, a numerical 
approach based on a finite difference method is 
developed. The suggested approach aims to account 
for the non-linear behavior of the soil without 
enduring too high a numerical penalty.  

2 ANALYTICAL APPROACHES FOR PLANE 
STRAIN LINEAR BEHAVIOR 

2.1 Problem statement 

This paper attempts to determine the response of the 
soil-pile system when harmonic loading is applied at 
the pile head (Fig. 1). The pile is supposed to be 
elastic, vertical and cylindrical. The pile is either 
pinned or clamped at its toe to portray its support on 
bedrock. It can be noted that the imposed harmonic 
displacement is aligned according to θ=0 where θ is 
the azimuthal angle. 

Figure 1. Soil-pile systm. 
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Table 1 provides a list of the problem parameters, 
their symbols and units. 
 

Table1. Pile, soil and loading parameters. 

 

2.2 Unit slice : Novak et al (1978)  
The response of an embedded pile to dynamic lateral 
loads can be predicted if the reactions of the soil to 
the motion of the pile can be assessed. We 
summarize below key results of Novak et al (1978) 
based on analytical approaches. These authors 
defined soil reactions to harmonic motion of a 
cylindrical body embedded in a linear elastic 
medium limited to cases that can viewed as plane 
strain. Such a situation arises when an infinitely 
rigid long cylinder embedded in an infinite medium 
undergoes uniform transverse displacements or 
rotates about its axis. In that case, no strain develops 
across the plane perpendicular to the axis, allowing 
consideration of a unit thickness of the medium. The 
assumptions adopted in this approach are: the soil 
medium is infinite, homogeneous, isotropic and 
viscoelastic with frequency independent material 
damping (hysteretic damping). The embedded 
cylinder is massless and infinitely long. The soil-pile 
system is subjected to a uniform lateral 
displacement: u0=U0eiωt (Fig. 2).  
 

 

Figure 2. Plane strain (horizontal vibration). 

 

The hysteretic damping ratios associated with the 
volumetric and shear strains respectively can be 
written as Dv=λ’/λ and Ds=G’/G where G*=G+iG’ 
and λ*=λ+iλ’ are the complex Lamé’s constants 
describing the soil viscoelasticity. 

The reaction of the soil per pile unit length can be 
modeled by a spring of stiffness ku. The complex 
horizontal stiffness or impedance (ku) per unit length 
of the cylinder represents the soil reaction to a 
harmonic displacement of unit amplitude: 

 
 

           
           *

00
*
00

*
0

*
0

*
00

*
010

*
01

*
00

*
0

*
01

*
00

*
0

*
00

*
01

*
0

*
01

*
01

21
2
0

4
aKbKbaaKbKaaKbKb

aKbKbaKbKaaKbKT

iSSGTGak uuu











 

(1) 

(2) 

where : 

G
GD

iD
ia

b
D

ia
a

V
r

a
ss 2

2,
1

,
11

, 1
1

0*
0

0*
0

0
0 
















 

denoting the longitudinal and shear wave velocities 
in an elastic medium and their ratio: 
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Figure 3 represents the Su1 and Su2 components of 

the lateral pile impedance according to Novak et al’s 
Equations (1) and (2) as functions of the 
adimensional frequency a0 for differents values of 
the hysteretic damping Ds (=Dv). 

 

  
Figure 3. Stiffness and damping parameters for unit slice. 

 

Symbol Description Unit Value 

Pile 

r0 

H 
I 
E 

ρp 

G 
Gmax 

γr 

D 
ν 
ρ 
ω 
u0 

 

Pile radius 
Pile length 
Pile’s moment of inertia 
Pile’s Young modulus  
density 
Representative shear modulus 
Maximum shear Modulus 
Reference shear strain 
Hysteretic damping 
Poisson ‘s ratio 
Soil density 
Angular frequency 
Oscillation amplitude 

[m] 
[m] 
[m4] 
[psi] 

[kg.m-3] 
[MPa] 
[MPa] 

[.] 
[%] 
[.] 

[kg.m-3] 
[rad.s-1] 

[m] 
  

0.3 
12 

0.0064 
3.5 106 

3600 

- 

8 
2.25 10-4 

- 
0.4 

1800 
40 

r0/1000 
 

Soil 

Loading 
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2.3 Thick soil layer (Nogami and Novak 1977) 
The reaction of a soil layer to the steady state 
horizontal vibration of an elastic pile has been 
theoretically investigated by Nogami and Novak 
(1977). The pile is assumed to be vertical and of 
circular cross-section (Figure 1). The soil is modeled 
as a linear elastic layer with hysteretic material 
damping. The assumptions adopted in this approach 
are: the bottom of the layer is fixed, the vertical 
displacements associated with horizontal vibration 
are negligibly small and the motion is harmonic. The 
equations of the viscoelastic layer undergoing 
harmonic motion can be written in the following 
classical form: 
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where u and v are respectively the radial and the 
ortho-radial displacements and: 
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According to Novak and Nogami’s analytical 
development, the solution can be expressed in terms 
of displacement as Bessel series. 
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where K0 and K1 are the modified Bessel functions 
of the second kind, of the 0th and first order 
respectively, An and Bn are integration constants 
determined from the boundary conditions, and: 
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2.4 Response of the pile to a harmonic loading 
In this section are reviewed the mechanical 
characteristics of the pile in order to assess the 
response of the soil-pile system to a harmonic 
loading in terms of local deformation, tilt, shear 
force, and bending moment of the pile. The pile head 
is subjected to a harmonic lateral displacement 
u0=U0eiωt, as shown in Figure 1. 

The governing equation of the pile motion is: 
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In which, EpI is the bending moment of the pile, m is 
the mass of the pile per unit length, and p(z) is the 
amplitude of the soil reaction to the motion of the 
pile: 
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The value of p(z) can be obtained based on the 
analytical results from Section 2.3. Then the 
amplitude of the angle of rotation (tilt ϕ), of the 
bending moment M, and of the shear force S are 
obtained from the standard relationships: 
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2.5 Parametric study 
Figures 4, 5 and 6 present the results of a parametric 
study allowing the evaluation of the impact of the 
pile slenderness, Poisson’s ratio, and hysteretic 
damping, respectively, on both real and imaginary 
parts of the shear force S at the pile’s head in 
response to the imposed harmonic displacement. 
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Figure 4. Head stiffness: influence of pile slenderness. 

 

 
Figure 5. Head stiffness: influence of Poisson’s ratio. 
 

 
Figure 6. Head stiffness: influence of hysteretic damping. 
 

Comparing Figures 4 through 6 to Figure 3 (unit 
slice modeling), it can noted that both real and 
imaginary parts of the head stiffness have the similar 
shapes. One significant difference between the two 
problems is the emergence of cutoff frequencies in 
the thick soil layer modeling. 

3 NUMERICAL APPROACH FOR SOIL 
NONLINEAR MODELING 

3.1 Soil stiffness degradation: Kondner modeling 
The hyperbolic model of Kondner will be introduced 
in the numerical approach to express the degradation 
of soil shear stiffness as strain increases. This 
hyperbolic model expresses the secant shear 
modulus as a function of the shear deformation γrθ as 
follows: 
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where γr, γc, τmax, and ξ are respectively, the 
reference shear strain, the amplitude of the shear 
strain, the maximum shear stress, and the hysteretic 
damping. 

Figures 7 and 8 present, respectively, the 
resulting variation of the secant shear modulus and 
the hysteretic damping with the shear strain. 
 

 
Figure 7. Stress strain law of (Kondner, 1963). 
 

 
Figure 8. Hysteretic damping variation with shear strain. 
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3.2 Numerical modeling: finite difference method 

3.2.1 Partial differential equations 
 

The degradation of the shear modulus according to 
Equation (17) results in the shear modulus no longer 
remaining constant: it ends up varying as a function 
of the radial distance from the axis of the pile: 
G=G(γ). As a result, the partial differential equations 
describing the dynamic equilibrium can be written as 
follows: 
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3.2.2 Boundary conditions 
 

The soil mass is decomposed into a nonlinear inner 
soil zone around the pile where the soil nonlinearity 
is handled via of Kondner’s hyperbolic model and a 
linearly elastic outer soil zone. Only the inner zone 
is discretized to obtain a numerical solution using 
the finite difference method. The behavior of the 
outer zone is handled by the introduction of Novak 
et al’s impedance expressions (Equations (1) and 
(2)) at the outer boundary of the inner soil zone. 

The boundary conditions are as follows: pile 
displaced at the head, clamped or pinned at the toe, 
as shown in Fig. 9. 
 

 
Figure 9. Inner and outer zone modeling. 

3.2.3 Finite difference method formulation 
 

Using the problem natural cylindrical coordinates 
system (Fig. 10), displacements and its derivatives at 
a node having (i, j, k) as radial, azimuthal and axial 
coordinates numbers are approximated using the 
displacements of the surrounding nodes. 

The derivatives at a node (i, j, k) are 
approximated by the following expressions: 
 

 
Figure 10.  Finite difference method. 

3.2.4 Algorithm 
The numerical method is implemented in an iterative 
algorithm schematized in Fig. 11. This algorithm 
takes into accounts the nonlinear behavior of the soil  

 

 
                    
Figure 11. Algorithm. 

4 RESULTS 

4.1 Comparison with the linear analytical method 
A comparative study is performed in order to 
confirm the results of the numerical approach by 
reference to those given by Novak and Nogami’s 
analytical approach while applying a small 
amplitude of vibration (U0=r0/106). 

Figures 12 and 13 present the results of the 
comparative study in terms amplitude of radial stress 
for two cases: static and dynamic (ω=40 rad.s-1).  
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Figure 12. Radial stress attenuation along θ=0 direction  
(static case). 
 

 
Figure 13. Radial stress attenuation along θ=0 direction 
(dynamic case). 
 

According to this comparison, the proposed 
numerical approach gives results similar to Novak et 
Nogami’s analytical approach, in the case of small 
amplitudes of vibration. 

4.2 Simulations highlighting non linear behavior 

4.2.1 Hysteretic damping 
Results showing parameters distributions will be 
presented within two radial planes that will be 
labeled as follows: 
- Movement radial plane, when the plane is parallel 
to the imposed displacement (θ=0). 
- Movement orthoradial plane, when the plane is 
orthogonal to the imposed displacement (θ=π/2).           

Figures 14 and 15 represent the distribution of the 
hysteretic damping in the movement radial plane and 
the movement orthoradial plane respectively, when 
the pile’s head is subjected to a harmonic 
displacement of amplitude U0=r0/1000 ( refer to 
Table 1 for other parameters)   

 
Figure 14. Hysteretic damping distribution (θ=0). 
 

 
Figure 15. Hysteretic damping distribution (θ=π/2). 

4.2.2 Shear modulus 
Figures 16 and 17 represent the distribution of the 
shear modulus in the movement radial plane and the 
movement orthoradial plane respectively, when the 
pile’s head is subjected to a harmonic displacement.  
   

 
Figure 16. Shear modulus distribution (θ=0). 
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Figure 17. Shear modulus distribution (θ=π/2). 
 

The lowest values of shear modulus are located at 
the direction (θ=π/2) since the highest values of the 
shear strain are located along this direction. 

4.2.3 Stress field 
Figures 18, 19, and 20 represent, respectively, the 
distribution of the axial vertical stress, the radial 
stress, and the orthoradial stress in the movement 
orthoradial plane. 

 

 
Figure 18. Axial vertical stress distribution (θ=0) 
 

 
Figure 19. Radial stress distribution (θ=0). 

 
Figure 20. Ortho-radial stress distribution (θ=0). 

5  CONCLUSION. 

The nonlinear response of the soil-pile system under 
lateral harmonic loading can be simulated using the 
suggested numerical approach based on a finite 
difference method, and allows us to draw some 
conclusions. 

The numerical results have been compared 
with the analytical results of Novak and Nogami for 
the case of low amplitudes of vibration. 
This comparison shows a good match between the 
two approaches. 

The nonlinear behavior of soil should be 
considered in the soil-pile interaction study because 
it can significantly affect the stiffness and damping 
of the soil-pile system, especially for the case of 
large deformations. 
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