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Abstract. This keynote lecture describes recent analytical and numerical advances in the modeling of the 
axial nonlinear dynamic interaction between a single pile and its embedding soil. On one hand, analytical 
solutions are developed for assessing the nonlinear axial dynamic response of the shaft of a pile subjected to 
dynamic loads, and in particular to vibratory loads. Radial inhomogeneity arising from shear modulus 
degradation is evaluated over a range of parameters and compared with those obtained by other authors and by 
a numerical radial discrete model simulating the pile and soil movements from integration of the laws of 
motion. New approximate non linear solutions for axial pile shaft behaviour developed from general 
elastodynamic equations are presented and compared to existing linear solutions. The soil non linear behaviour 
and its ability to dissipate mechanical energy upon cyclic loading are shown to have a significant influence on 
the mechanical impedance provided by the surrounding soil against pile shaft movement. The limitations of 
over-simplified modelling of pile response are highlighted.  

1 Introduction  

1.1 Typical situations   

Piles are used to support civil engineering structures 
whenever loads are concentrated relative to the soil 
bearing capacity and thus strength. They consist of 
elongated structural elements that are embedded in the 
soil to a depth that will allow bearing layers to develop a 
safe resistance.  Typical situations where piles are used 
are illustrated on figure 1. In the most common case 
referred to as “active” pile, the pile head receives the load 
from the superstructure and transmits it to the resisting 
soil.  

Although all 6 load components (forces components 
and moments about 3 orthogonal axes) need to be 
considered, the pile axial component generally governs 
the design of the pile and in particular its embedment 
depth . In addition to static loads resulting from gravity, 
operational transient or periodic loads may warrant 
special design requirements. In response to the quickly 
expanding market of offshore renewable energy [1], piles 
have been recently used in several configurations to 
support wind turbines, as illustrated in figure 1.    

Extreme loading cases have also to be considered due 
to the fact that piles have to be installed at depth: such 
cases involve pile impact driving as well as vibratory 
driving.  

Due to space and time constraints, this lecture will 
only focus on the axial response of a pile subjected to a 

  
 

Fig.1. Typical use of piles to support wind turbines: Tripod, 
Jacket, and Monopile [1]  
 
harmonic axial load. Similar contributions can be 
developed on the pile lateral response, torsional response 
and would justify a discussion on the coupling. Finally, 
most of the discussion will revolve about the friction 
component of the pile resistance, leaving out the 
singularity brought about by the pile bottom end. 

Whatever the mode considered, the engineering 
picture needs to involve three main ingredients: the 
complete definition of all actions on the pile, the 
structural characterization of the pile, and the 
characterization of the embedding medium, i. e. the soil.  
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1.2 Pile characterization   

Piles used for large projects are commonly made of 
concrete or steel. Generally concrete is used for onshore 
applications while steel is used for offshore applications. 
In the later case, steel pipes are used to construct “pipe 
piles”. The advantage of that geometry is that the volume 
of soil to be displaced to accommodate pile insertion into 
the soil is a very small fraction of the gross pile volume 
that will govern the geotechnical capacity of the pile. For 
large diameter piles, the inertia of the soil volume inside 
the pipe will prevent the soil core from moving down in 
unison with the pile during driving, leading to what is 
termed a “coring” mode of driving. 

Most tubular piles are driven by impact using special 
pieces of equipment (hydraulic pile hammers) set on top 
of the pile during installation. More rarely, piles can be 
vibrated into the ground using vibratory hammers. Once 
installed to an appropriate depth, a pile will develop its 
bearing capacity over time, moving from its end-of-
installation capacity towards its long-term capacity. The 
pile geotechnical capacity will come from contact 
stresses generated by the soil along two interfaces: a 
shear stress along the pile lateral surface (called shaft) 
and a normal stress against the pile end bearing area 
(called toe).  

The axial bearing performance of a pile can be 
characterized by its response under axial static loading. 
As illustrated in figure 2a, the pile load-settlement curve 
provides the overall relationship between the applied load 
F and the pile settlement s. One can notice that under 
limited loads, the pile responds linearly, but endures non 
recoverable displacements under larger loads, with the 
ultimate limit state being defined by unlimited 
displacements under an asymptotic load.  This reflects the 
non linear behaviour of the soil while the pile material 
remains well within its elastic realm. This forces us to 
address an essential feature of the system, namely the soil 
behaviour that will be characterized in Section 2.   

1.3 Simplified Soil-Pile interaction   

Engineering methods that are commonly applied to assess 
pile response under a static load applied at the head of the 
pile treat the pile as a column collecting reactions along 
its shaft and at the pile toe. Assuming that the embedding 
medium is elastic, it would appear possible to model each 
local reaction as proportional to the local displacement. 
Further assuming that each equivalent spring is 
independent from its neighbours allows one to treat each 
soil layer with its own properties.  
This simplification known as a “Winkler” model has been 
extended to cope with non linear behaviour, leading to 
what is known in the geotechnical jargon as “t-z” and “Q-
z” curves. A “t-z” curve models the non linear 
development of the local shear stress along the pile shaft 
versus local vertical displacement while a “Q-z” curve 
models the non linear development of the pile toe 

resistance versus the pile base displacement. figure 2b 
schematizes such simplified modelling of the soil-pile 
interaction. 

By extending Winkler approach initially developed in 
the static domain, the dynamic response of pile shafts 
embedded in an elastic medium can be studied by 
replacing the soil surrounding the pile with a series of  
independent springs and dashpots. Notably, Smith [2] 
used that approach to model soil resistance to pile 
driving, leading to the emergence of soil-pile dynamic 
interaction parameters known as “quake” and “damping”, 
as illustrated as Q and J on figure 3. 

Fig. 2. (a) Global load-settlement curve at top of pile  
(b) Embedded pile as continuously supported column 

Fig. 3. Smith visco-elasto-plastic load-deformation curve for 
local slice of pile shaft (adapted from [2]) 

For a pile undergoing harmonic axial motion, 
coefficients of the Winkler springs and dashpots depend 
on the frequency. Such coefficients can be obtained by 
considering the elastodynamic problem of an infinitely 
long pile subjected to harmonic vertical displacements. 

An alternative approach consists in modelling fully 
coupled 3D pile-soil interactions, for example by means 
of the finite element method. However because of the 
complexity of the problem, especially when the pile is 
subjected to high strain loading conditions, this approach 
makes it difficult to properly simulate the essential 
phenomena at play and is faced with the challenge to 
harness adequate model parameters. Practical use of the 
full 3D finite element approach is further hampered by its 
high demand for computer resources. 

While structural engineers are quite fond of 
simplifications of the pile behaviour boiling it down to a 
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single spring and sometimes a dashpot, they tend to 
overlook that a pile is a complex infrastructural system 
that interacts with the soil surrounding and with the 
superstructure. Furthermore soil is a medium that is far 
from behaving linearly, as can be summarized below.  

2 Soil characterization  

Soil is a multiphase medium made of solid particles 
whose composite behaviour depends on many factors: 
attributes of particles, fluid filling the voids left between 
the solids, stress history, just to name a few. While the 
particles can be characterized by their nature, size, and 
shape, their overall behaviour with respect to the water 
content can be characterized by their plasticity index (PI). 
The PI of sand is zero while clay minerals can exhibit 
values in excess of 50, with silts having intermediate 
values.  

Volume variations and distortion of soil depend solely 
on the soil “effective” stress, i.e. the stress between 
particles, the pore pressure having no intrinsic role other 
than taking a part of the total stress. One rather unique 
feature of soil behaviour is its tendency to change volume 
when sheared. Loosely packed soils tend to contract 
while densely packed soils tend to dilate. Soil shear 
strength essentially comes from friction, which is 
controlled by effective stress while the effective internal 
friction angle generally assumes a value close to 30°. 

When saturated with water, a contractant assemblage 
of particles can only modify its volume inasmuch water 
has the time to drain away from it. This means that low 
permeability soils or soils undergoing fast loading have to 
deform without changing their volume, which implies a 
substantial change in their effective stress. Such a 
volumetric constraint explains why the strength of a soil 
depends so drastically upon its loading rate. At one 
extreme, loading is so slow that volume changes can be 
accommodated without any interference from the pore 
fluid, and the soil will behave as “drained”. At the other 
extreme, loading is so fast that volume remains constant 
and the material will behave as undrained. 

Whether drained or undrained, the latter case being 
more common under dynamic loading, soil beahvior 
exhibits several features that are characterized in the 
following section, namely, stiffness, strain hardening and 
yield criteria, implying material damping upon cyclic 
loading. 

2.1. Key attributes of soil behavior  

2.1.1 Small strain stiffness 

An initial (or maximum) shear modulus can be calculated 
for rounded grained sands using the relation of Hardin 
and Black [3]: 

5.0'
max 1

)²17.2(
6908 σ

e
eG

+
−= [kPa]            (1) 

where e  is the soil void ratio and 'σ  is the effective 

confining mean stress usually calculated as: 

3
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Where '
vσ  is the easily calculated effective initial 

vertical stress, ''
0, vr kσσ =  is the effective horizontal 

stress, with k  being the coefficient of horizontal stress in 
the soil. For a “wished-in-place” pile assumption, an at 
rest coefficient is estimated herein using Jacky’s formula 

'sin1 ϕ−=k  wherein 'ϕ  is the soil internal friction 
angle.  

2.1.2 Strain hardening 

Thanks to numerous forms of soil testing, the relationship 
between shear stress and shear strain has been shown to 
deviate from the initial tangent value Gmax defined above 
as shear strain increases, as shown in figure 4. This can 
be viewed as “strain hardening” since the shear stress 
increases beyond an “elastic” limit to be identified. In soil 
mechanics, this feature is preferably described in terms of 
shear modulus degradation [4] inasmuch the secant 
modulus Gs degrades with strain. Two examples of 
models commonly accepted to characterize the shear 
modulus degradation are discussed in Sections 2.2 and 
2.3. Densely packed soils, such as stiff clays can also 
exhibit some form of strain softening, which will not be 
covered in this lecture.  

At large strains, the soil reaches a “critical state” 
shear strength characterized by a constant volume and 
mean stress. That ultimate limit state will be 

characterized by the value of maxτ  shown on figure 4. 

Fig. 4. Hyperbolic shear stress – shear strain model for soils [4] 

2.1.3  Material damping and viscous equivalent 

According to Masing rules [5] which will be deemed 
applicable, if the loading curve is characterized by the 
relationship 0),( =δFf  with F  the load and δ  the 

displacement, then for a cycle between points ),( cc Fδ
and ),( cc F−−δ , the loading-unloading curves are: 
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where ),( **
cc Fδ  is the point of loading inversion. figure 

5 provides an illustration of Masing’s rules, showing how 
the backbone loading curve can be expanded and rotated 
to generate the unloading and reloading curves.  

The loop developed within this stress-strain plane 
highlights the dissipation of mechanical energy during a 
complete loading cycle. Such a material dissipation is 
characterized by the soil “damping coefficient”, a relative 
measure of the dissipated energy WΔ within one cycle to 

the maximum accumulated elastic energy. If cτ  is the 

amplitude of the shear stress and cγ the amplitude of the 

shear strain, the soil damping coefficient is defined as 

)4/( WW πξ Δ= , with /2. ccW τγ= . 

It should be noted that for a given maxτ the material 

damping depends on cγ  but not on the frequency of a 

potentially considered harmonic movement. Harmonic 
displacements prescribed by the pile generate cyclic 
deformations and stresses within the influenced soil zone 
that can be conveniently expressed by: 

ti
c

ti
c

ti
c eGeiGe ωωω γγξττ ...).21.(. *=+==   

wherein 
*G  is the complex shear modulus. 

Fig. 5. Masing’s rules [5] applied to stress-strain curves 

Such an expression postulates that energy losses can be 
attributed to an out of phase term treating the soil as 
visco-elastic. In that case, a so called “linear equivalent” 
soil model is invoked, although strictly speaking, it is 
linear only under static conditions.  

Assuming hysteretic energy losses can be handled at 
a given frequency by an equivalent viscous-elastic shear 

modulus )21.(* ξiGG += , the equivalent soil viscosity 
can be expressed under harmonic conditions at frequency 

ω  as ωξγτη /2G=∂∂= � , with γ�  being the shear 
strain rate. Although it does not respect the shape of the 
stress-strain loop, the assumption of the “linear 
equivalent” medium is generally accepted because of its 
mathematical convenience, as will be shown in Section 
3.3.  

2.1.4 Cyclic degradation and liquefaction 

Beyond strain related shear modulus “degradation” 
discussed above, soil is subject to fatigue whenever strain 
cycles of sufficient amplitude accumulate. In loose 
granular soils that are saturated, the cyclic degradation 
can be compounded by the onset of “liquefaction”. This 
phenomenon occurring in contractive materials involves 
the increase of the pore pressure to the point that effective 
stresses vanish. Since soil strength is intrinsically related 
to friction, the removal of any effective stress actually 
transforms the soil into a medium unable to resist to shear 
stress, i.e. a fluid. 

2.2. Hardin and Drnevich [4] model

The relationship between shear stress and shear strain 
under undrained conditions can be assumed to follow the 
soil model suggested by Hardin & Drnevich [4] and 
based on Kondner [6] formulation. 

rG γγ
γτ

τγ
γτ

+
=

+
= .

//1 max
maxmax

           (4) 

where τ  is the shear stress, γ  is the shear strain, maxτ  is 

the maximal shear stress (shear strength), maxG  is the 

initial shear modulus and maxmax /Gr τγ =  is the 

reference strain. Degradation of the secant shear modulus 
with the shear strain can therefore be defined by: 
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Applying Masing’s rules to the Hardin & Drnevich [4] 
loading curve leads to the following expression of the 

damping coefficient as a function of cγ : 
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Illustrations of the Hardin & Drnevich [4] formulation 
and Masing’s rules [5] are provided in figures 4 to 6.  

2.3. Ishibashi and Zhang [7] model

Alternatively, the stress-strain relation suggested by 
Ishibashi and Zhang [7] can be considered to characterize 
soil nonlinearity, especially in the weakened zone close 
to the pile shaft. The degradation of the secant shear 
modulus is expressed as a function of the shear strainγ , 

of the effective confining mean stress 'σ , and of the 

plasticity index IP: 
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The hysteretic damping coefficient resulting 
from equations 7a, b, c can be expressed as [7]: 

]1547.1)²(586.0[
6

1

maxmax

0145.0 3.1

+−+=
−
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G

G
Ge IP

ξ        (8) 

The asymptotic value of ξ  depends on the plasticity 

index (
6

1
3.10145.0

max
IP

IP
e−+=ξ ), reaching a maximum of 

33% for IP=0 and 18.3% for IP=50. This feature makes 
the Ishibashi and Zhang’s model more flexible than the 
basic hyperbolic model [4] and applicable to several 
types of soils according to their plasticity attributes. 

2.4. Experimental evidence and complicating 
factors

Figure 6 presents a comparison between experimental 
curves established by Vucetic and Dobry [8] for soils of 
varying PI and the above theoretical formulations of the 
damping coefficient (6 and 8), for various reference 
strains. It can be noted that experimental values of ξ can 
typically range between 0 and 0.4. 

In soils that are subject to cyclic degradation, such as 
loose sands or sensitive clays, the maximum shear stress 

(shear strength) maxτ  evolves as cycles accumulate. Such 

an evolution is not explicitly accounted for in the 
analytical models presented hereafter; rather it is 

accounted in the choice of an equivalent maxτ  that takes 

Fig. 6. Soil damping coefficient ξ  as a function of cyclic shear 

strain γc: experimental curves vs. models [4] and [7] 

a representative number of cycles and degradability into 
account. That refinement can however be explicitly 
accounted for in the numerical models developed by 
Holeyman [9], where several degradation laws of 

maxτ are implemented according to the local shear strain 

history. 

2.5. More advanced models  

Many more models have been developed by researchers 
attempting to capture various features of the complex soil 
behaviour. These can be approached by separating 
recoverable and non recoverable deformations, the latter 
being handled through plastic theory. Three-dimensional 
representations of the yield function in the stress space 
and the choice of flow rules in the strain space are then 
necessary, requiring the knowledge of up to tens of 
parameters that are difficult to determine experimentally 
for many engineering projects. 

The separation between elastic and plastic domains 
can be circumvented by the use of so-called 
“Hypoplasticity”, which appears to gain popularity 
thanks to a more reasonable number of parameters. While 
the initial hypoplastic model [10] required 8 parameters, 
those incorporating the intergranular concept and cyclic 
features [11] can go up to 13. That number contrasts with 
the more manageable 2 or 3 parameters necessary to 
understand what are believed to be the essentials of pile 
response used in the remainder of this invited lecture. 

Moreover the basic parameters used (e and PI or maxG
and maxτ ) are standard geotechnical parameters widely 

available from customary site characterization. 

3 Problem statement and linear solution  

3.1 Idealized conditions  

The problem considered in this keynote lecture involves a 
vertical cylindrical floating pile shaft of infinite length 
and rigidity, embedded within an infinite homogeneous 
soil medium. The pile shaft is subjected to a purely 
harmonic axial displacement prescribed by 

tww c ωcos.00 =  where cw0  is the amplitude of 

displacement of the pile shaft, and ω  is the circular 
frequency, and t the time. The examined system is a unit 
slice of the problem as shown on figure 7, isolating a 
single pile shaft segment and associated unit thickness 
soil layer of infinite radial extent. Plane strain conditions 
prevail across any horizontal slice because of the infinite 
extent of the considered problem in the axial direction 
and uniformity of the prescribed movement along the 
vertical direction. The layer outside the pile can be 
viewed as an infinite shear plate with a circular hole 
about which the harmonic vertical motion is prescribed.  
 The prescribed dynamic displacement generates 
cyclic deformations and stresses within the analyzed soil  
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Fig. 7. Unit layer considered within infinite pile shaft and 
embedding soil 

layer shown on figure 7 that can be represented 

by )cos(. θωτ −tc  where cτ  is the stress at radial 

distance r and θ  is the phase difference with respect to 
the displacement applied at the soil-shaft interface.  

In practice, stress anisotropy induced due to the 
weight of the soil will result in a specific distribution of 
the shear modulus with depth. Furthermore, soil layering 
is not homogeneous as the pile can endure axial 
compression, making the infinite extent of the pile and 
surrounding soil assumption less legitimate. Averaging of 
soil properties along the depth of the pile shaft should be 
considered prior to using a single layer model.  

Relationship between shear stress and shear strain 
under undrained conditions will be assumed to follow the 
soil model suggested by Hardin & Drnevich [4] and 
based on Kondner [6] formulation. 

3.2 Soil impedance to pile shaft movement  

Under the assumption of small deformations and absence 
of slippage at the pile shaft-soil interface, and provided 
radial deformations as well as the pile mass effect can be 
neglected in the analysis, the differential equation 
describing the vertical motion w(r,t) of a floating rigid 
pile shaft embedded in a homogeneous isotropic elastic 
soil medium of shear modulus G and volumetric mass 
ρ is given by: 

²
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r
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r
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∂++

∂
∂ ρ          (9) 

Let us consider further that the vertical movement is 
harmonic and stationary; it can be characterized by the 

following relationship: ti
c ewtrw ω.),( = , where cw is 

the amplitude of the soil displacement that solely depends 
on the radial distance r. Assuming hysteretic energy 
losses can be handled at a given frequency by an 
equivalent viscous-elastic shear modulus 

)21.(* ξiGG += , the equation of movement becomes: 
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Extending the Winkler concept introduced in Section 1.3, 
the dynamic reaction of the soil surrounding the pile shaft 
may be expressed with reference to an equivalent spring-
dashpot system anchored to a stationary point, as 
illustrated by figure 8. The dynamic soil reaction 
opposing the prescribed pile shaft movement can then be 
expressed as 

),(.),(.),( trwKtrwCtrP zzz += �                  (11) 

with zP  the soil reaction per unit length of shaft, zC  the 

damping coefficient and zK  the stiffness coefficient. 
Since the problem has been stated within a unit thickness 

soil layer, it should be noted that zP , zC , and zK  are 
expressed per unit length of pile shaft, and thus typically 
in the following respective units ]/[ mkN , ]/[ skPa , 

and ][kPa . 

 Assuming ),( trPz  is harmonic, we can define the 
unit (lineal) shear impedance of the soil against the pile 
shaft movement in the z direction as:  

    

)(.
)(

.2
).(

)..(

0
0

0
0 r

rw
r

KiCG

KiC
w
P

I

c
c

zazas

zz
c

zc
z

τπ

ω

=+=

+==
             (12) 

with 0sG  the shear modulus at the pile shaft-soil 

interface )( 0rr = ,  and  

{ } 0/ szza GIK ℜ=                               (13) 

{ } )./( 0szza GIC ωℑ=   

the dimensionless stiffness and damping parameters. 

Fig. 8. Equivalent Winkler spring-dashpot soil model 
supporting the pile shaft
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3.3 Analytical solution for equivalent medium  

Assuming that the shear modulus is independent of the 
radial distance r to the pile shaft, a unique shear wave 

velocity can be defined as: ρ/ss GV =  for a purely 

elastic medium (or ρ/**
ss GV =  for the equivalent 

visco-elastic medium) (10) can be thus expressed as:  

0.)(.
1

²

² 2* =+
∂

∂+
∂

∂
c

cc wk
r

w
rr

w
        (14)  

where sVk /ω=  is the shear wave number, the asterisk 

indicating that the viscous soil behavior (characterized by 
the Kelvin-Voigt formulation) is taken into consideration, 

i.e. ** / sVk ω= .  

 Defining the dimensionless frequency for the pile 

shaft-soil interface as sVra /. 0ω=  or *
0

* /. sVra ω= , 

the general solution of (14) is given by 

( )*)2(
0

0

*)2(
00 .. aH

r
raHww cc ��
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�
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�
=             (15) 

with υυυ YiJH .)2( −=  the Hankel function and νJ , 

νY  , Bessel functions of order υ  of the first and second 

type, respectively. Based on the  

rtrwGtr ∂∂= ),(.),( *τ  relationship, the solution can 
also be expressed in terms of stress amplitudes: 
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Particular solutions can be obtained by applying 
adequate boundary conditions. A first boundary condition 
corresponds to the imposed displacement at the pile shaft-

soil interface, i.e. cc ww 0=  for 0rr = . The second 

boundary condition is a radiation condition imposing that 
the wave should only propagate away from the vibration 
source at the outer boundary ( ),( trw ∞→ , also known 
as “Sommerfeld” condition [12]).  
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Using [Equ.8] we deduce the equivalent impedance:  

( )
( )*)2(

0

*)2(
1* ).21(..2

aH
aH

iGaI sz ξπ +−=        (19) 

Dimensionless impedance parameters defined by (12) and 
(13) are depicted in figure 9, emphasizing the influence 
of the hysteretic damping coefficient. In the absence of 
viscous damping ( 0=ξ ) only radiation or geometrical 
damping prevails. In that case, the stiffness parameter 

(real part azK , of impedance) tends toward π  for 

increasing frequencies )( ∞→a , per (9). Except for 

low a  values, the dimensionless damping term azC ,

linearly increases with frequencies at a rate of 

aC az Δ=Δ π2, . An increased hysteretic damping 

coefficient enhances the quasi-linear increase of the total 
(hysteretic and radiation) damping term, but decreases the 
in-phase stiffness component. Figure 9 also shows that 

azK ,  can become equal to 0 at particular values of a
( )0( , =azKa ), implying a potential for some form of 

‘resonance’ effect. Influence of the hysteretic damping on 
the infinite annular shear plate apparent ‘resonant’ 
frequency can be appreciated in figure 10. The physical 
reason for that effect remains unclear, despite the fact that 
similar phenomena have been experimentally observed 
on model tests [13]. 

Fig. 9. Impedance parameters for homogeneous shear modulus 

Fig. 10. Dimensionless “resonant” frequency of the soil annular 
shear plate vs. hysteretic damping coefficient 
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Typical results expressed in terms of dimensionless 
displacement and stress amplitudes profiles are presented 
in figure 11 for two dimensionless frequency values and 
two damping coefficients. The dimensionless 
displacement (stress) amplitude is the ratio between the 

displacement (stress) amplitude )( ccw τ  at a given 

radial distance to that )( 00 ccw τ  at the pile shaft-soil 

interface.  

For 0=ξ  and high a  values, displacement 

amplitudes attenuate according to the inverse of the 
square root of the radial distance, while for 0=ξ  and 

low a  values, shear stress amplitudes attenuate 

according to the inverse of the radial distance. These 
results can be demonstrated by considering the 
asymptotic behavior of the Bessel functions for ∞→a
(17) and (18). It can also be noted that material damping 
enhances the radial attenuation of both displacement and 
stress amplitudes. 

Fig. 11. Radial distribution of displacement and shear stress 
amplitudes  

Impedance parameters for use in the Winkler 
approach have been studied by many researchers in the 
past. First models (e.g. Novak [14]) were based on the 
assumptions that the soil behavior is governed by the 
laws of (viscous-) elasticity and the soil is perfectly 
bonded to the pile. In practice however the soil region 
immediately adjacent to the pile can undergo a large 
degree of straining which causes the soil-structure system 
to behave non-linearly and even degrade under cyclic 
loading. Slippage can also occur about the contact area.  

4 Non linear aspects  

4.1. Literature review  

Nonlinear models of axial pile-soil vibration started with 
the works of Novak and Sheta [15], Mitwally and Novak 
[16], Han and Sabin [17], and El Naggar and Novak 
([18],[19]) who suggested distinguishing two separate 
radial soil zones around the pile shaft: an inner zone with 
reduced shear stiffness and an outer zone where the 
elastic solution is considered.  

To eliminate undulations in the impedance 
functions due to wave reflections from the interface 
between the two media, some researchers proposed a 
continuously increasing modulus with radial distance to 
the pile shaft. Gazetas and Dobry [20] and Veletos and 
Dotson [21] suggested schemes in which the modulus 
increased unboundedly. Han and Sabin [17] formulated 
impedances based on a parabolic variation of the medium 
properties so that the inner zone has properties smoothly 
approaching those of the outer zone.  

These contributions however address the problem 
of lateral soil heterogeneity with only qualitative 
reference to the non-linear soil response, since the 
variations of soil properties invoked are merely 
hypothetical. To aid practical applications, Michaelides et 
al. ([22],[23]) utilized experimental data (e.g. Vucetic & 
Dobry [8]) characterizing the dependence of the secant 
shear modulus and hysteretic damping of soil on the 
shear strain amplitude and the nature of the soil (the latter 
represented by the plasticity index PI). The variation of 
modulus and damping is then related to the magnitude of 
the applied load through the amplitude of the shear 
strains induced within a succession of co-axial cylinders. 
Such an approach involves assumptions related to the 
shear stress distribution and implies the use of an iterative 
procedure to calculate the variation of modulus as a 
function of the distance to the pile shaft.  

Some modifications to the Michaelides et al.’s 
model have been proposed by Holeyman et al. [24] to 
simplify definitions of the model parameters as well as 
calculation procedures. Using the modified method, a 
refined soil discretization can be achieved based on more 
rigorous soil behavior description and without a priori 
assumptions about the shear modulus or shear stress 
radial distributions.   

The following sections describe analytical solutions 
assuming various theoretical radial variations of shear 
modulus. The results are evaluated over a range of 
parameters and compared with those obtained from the 
semi-analytical model derived from [22] and [23], and 
from a radial discrete model simulating the pile shaft and 
soil movements by integrating of the laws of motion 
([25], [26], [27] (pile driving model), [9], [28], and [29] 
(Vibratory pile driving)). 

4.2 Radius-dependent shear modulus

Assuming that the stress developed into the soil 
attenuates according to the inverse of the radial distance, 
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which is exact in the static case, the following can be 

established: rr // 00 =ττ . If we further consider that 

the stress 0τ  is a fraction f of the shear strength maxτ , i.e. 

rrf /./ 0max =ττ , (5)  becomes: 

).1.( 0
max �

�
�

�
�
�−=

r
rfGGs                   (20) 

where f can be viewed as a “loading factor” or soil 

strength mobilization ratio at 0rr = : it is actually the 

inverse of the factor of safety of the pile shaft capacity.  
 Because of the variation of the shear modulus with 
the radial distance, two extreme shear wave velocities can 

be distinguished: ρ/00 ss GV =  at the pile shaft-soil 

interface and ρ/maxGV ff =  in the free field at the 

furthest distance away from the pile. Dimensionless 
frequencies can thus be defined respectively for the pile 

shaft-soil interface: 000 /. sVra ω=  (or 
*
000

*
0 /.21/ sVriaa ωξ =+= ) and the free-field: 

ffff Vra /. 0ω=  (or ξiaa ffff 21/* += ). Defining 

1/ 0 >= rrς  the dimensionless distance to the pile 

shaft, the general equation of movement becomes: 
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+
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cff
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aw

f
w

ζ
ζ

ζζ
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         (21) 

Analytical solutions of (21) are presented in [24] and 
discussed below. Influence of the ‘f’ parameter on the 
shear modulus distribution is depicted in figure 12. The 
reader is referred to Bertin [30] for solutions based on 
other assumptions of shear modulus distributions. 
  

  
Fig.12. Influence of ‘f’ parameter on the shear modulus 
distribution, assuming stress attenuation according to r-1

4.3 Semi-analytical solutions

Michaelides et al. [22],[23] suggested the use of a radial 
discretization and approximation of the shear modulus Gs

distribution within each zone using the following 
expression  

m

s r
rGG ��
�

�
��
�

�
=

0

*
0.            (22) 

with m values decreasing with the distance to the pile 
shaft. This discretization also allows taking into account 
damping coefficients ξ  varying with r, albeit through a 
piecewise approximation.  

Michaelides et al. assume that the shear stress 
distribution is independent from the shear modulus 
distribution, in order to alleviate interdependence 

between sG , cτ  and cγ . Based on this assumption and 

the use of empirical rules for the shear modulus 
distribution, they proposed following equation: 

�
�
�

�
�
�
�

�

�
	



�
�

Λ−=

72.0

0
max )(..1. rs ah

r
rGG      (23) 

where 
maxττ=Λ  is a loading intensity factor and 

)( rah a shape function. Since the method imposes the 

use of iterations to determine )( rah  values, Michaelides 
limited the number of radial increments to four. That 
approximation has been further enhanced by Bertin [30], 
who developped a special routine able to iterate on many 
more radial increments.  

Because of the limitations of the Michaelides et 
al.’s method, Bertin [30] suggested another approach 
based on analytical elements to discretize the radial 
coordinate. The shear modulus distribution is still 
described by a set of parabolas, but based on the Hardin 
& Drnevich [4] functions and Masing rules [5]. 
Furthermore, a higher number of radial steps, up to 270, 
is considered. Because values of m and ξ  are different 
for each element, displacements and stresses are obtained 
by assuring continuity of displacement and stress 
equilibrium. For each discretization step, the following 
equations (24) are used: 
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The four integration constants )1( −iA , )(iA , )1( −iB
and )(iB  are deduced from continuity and equilibrium 

conditions, adopting previously described boundary 
conditions (imposed displacement and outer radiation). 

As illustrated by figure 13, Bertin analytical 
elements approximation [30] emulating Michaelides et 
al.’s concept is correct for low values of the 
dimensionless frequency, but is more questionable for 
higher values.  
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Fig. 13. Shear stress radial distributions for different values of  
(22) m exponent compared to [30] enhanced approximation 

4.4 Numerical solution

4.4.1 Model 

Holeyman [26],[27],[28],[29] has suggested the use of a 
radial discrete model (see figure 14) to calculate the 
vertical shear waves propagating away from the pile 
shaft. The pile is considered as a rigid body and the soil is 
represented by discretizing the medium into concentric 
rings that have their own individual masses and that 
transmit forces to their neighboring ones. The movement 
of the pile and the rings is calculated from time 
integration of the law of motion: the equations of 
movement are integrated for each cylinder based on their 
dynamic shear equilibrium in the vertical direction. An 
energy absorbing boundary condition in accordance with 
plane-strain elasticity theory [14] limits the lateral extent 
of the model.  

The model makes use of constitutive relationships 
representing the large-strain, dynamic and cyclic shear 
stress-strain strength behavior of the medium surrounding 
the pile shaft. Initially implemented for vibratory driving 
modeling in a Basic computer code “Hipervib-II” [9], it 
applied the hyperbolic Kondner law (4) and Masing rules 
[5] to model the shear force-displacement relationships 
between successive rings. 

Fig. 14. Numerical model geometry (adapted from [28]) 

The program was further developed using Matlab® 
routines [30] to produce the results presented herein with 
a view to compare them with the above described semi-
analytical methods. Strain rate effects as well as cyclic 
degradation effects which are accounted for in the 
Hipervib-II program were however disabled to produce 
results compatible with the assumptions adopted in the 
other methods discussed in this paper. 

When comparing Hipervib-II with the (semi-) 
analytical methods, following considerations are made: 
(a) only results corresponding to the steady state (after a 
few second of simulations) are presented herein, (b) 
impedance parameters are calculated as follows: 

�
�= ωπ

ωπ
τ

π /2

0 0

/2

0 0

0
),(

),(
..2

dttrw

dttr
rI z

         (25) 

with )(tw  imposed at the pile shaft boundary and )(tτ
calculated by Hipervib-II at the pile shaft-soil interface. 
In order to compare the numerical results with the 
analytical ones presented herein for the shaft only, the 
base resistance that can be modeled in Hipervib-II has 
been set to zero. 

4.4.2 Radial distribution of shear modulus 

Relevant results are related to the evolution of the shear 
modulus as a function of the radial distance, by reference 
to its value at the pile shaft-soil interface. Figure 15 
shows results obtained with three methods: the analytical 
solution to (21), Michaelides et al. original approximation 
(4 increments, labelled as “M-4”), and Hipervib-II 
program.   

Table 1. Reference parameters for comparative study 

Soil density ( ρ ) 1.8 T/m³ 

Maximum shear modulus (Gmax) 60 MPa 
Free field shear wave celerity (Vff) 183 m/s 

Shear strength ( maxτ ) 0.15 MPa 

Reference shear strain ( rγ ) 1.25 10-3

Hysteretic damping value (ξ ) 0  - 

Pile shaft radius (r0) 0.5 m 
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Fig. 15. Shear modulus distributions according to different 
approaches for same acceleration amplitude of 9.9 m/s2  

Reference parameters used to that end are summarized in 
Table 1, for two different combinations of imposed 
displacement amplitude and frequency leading to a given 
acceleration amplitude of 9.9 m/s2.  

For the same imposed acceleration amplitude 

( ².0 ωcw ), all three methods indicate a more heavily 

degraded shear modulus at the pile shaft-soil interface for 
a larger displacement amplitude. When however 
compared to the Michaelides original method, the 
analytical results [30] better match those of the numerical 
model.  

4.5 Comparison of calculated impedance 
parameters

Impedance parameters deduced from application of the 
semi-analytical method using Table 1 parameters are 
presented in figure 16 with a view to emphasize the 
influence of the imposed displacement amplitude. Figure 
16 represents the real and imaginary parts of the 
impedance versus the dimensionless frequency aff for 
three displacement amplitudes.  

Comments made for the homogeneous model in 
Section 3.3 are also applicable to the non-homogeneous 
models, as far as the evolution of the impedance curves 
as functions of the dimensionless frequency is concerned, 
when trading the hysteretic damping coefficient for the 
amplitude of displacement. A comparison between semi-
analytical and analytical results is presented in figure 17, 
indicating some quantitative variations in the impedance 
results that mainly depend on the free field dimensionless 
frequency. In the above example, analytical results are 
quite close to the Bertin [30] approximation. If that  

Fig. 16. Stiffness and damping parameters deduced from the 
semi-analytical method (see Table 1 for reference parameters) 

Fig. 17. Comparison of analytical and semi-analytical solutions 
for woc/ro=0.4 10-3  (see Table 1 for reference parameters)  

observation could be extended to other values of woc/ro

and ξ , it would mean that the simplest form of stress 
attenuation (corresponding to the static case) could be 
adopted for the dynamic cases. 

Combined influences of frequency and imposed 
displacement amplitudes are represented in figure 18 for 
the analytical method. Both real and imaginary parts of 
the impedance decrease as the imposed displacement 
increases, whatever the frequency. Inspection of (12) and 
figure 19 shows how the stress value at the pile shaft-soil 
interface naturally tends towards the shear strength with 
increasing displacements, evidencing another 
manifestation of stiffness degradation.   
 The evolutions of the pile shaft friction mobilization 

ratio )/( maxττ oc versus dimensionless displacement 

(woc/ro ) shown in figure 19 can be compared to so-called 
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“t-z curves” published in the literature to evaluate the pile 
shaft load-displacement behavior under axial static 
( 0=ffa ) conditions. As an example, static friction 

mobilization curves adopted by Holeyman [25] based on 
an extension of the influence radius Rm approach 
suggested by Randolph and Wroth [31] to incorporate a 
hyperbolic stress-strain law are also plotted in figure 19 
for two values of the boundary radius Rm. Confirmation 
of the effective reduction of the apparent “quake” value 
as velocity increases, observed by Holeyman [7] can be 

found in figure 19 for increasing values of ffa . 

Fig. 18. Impedance parameters as functions of the imposed 
displacement (analytical model for Table 1 parameters). 

5 Conclusions  

The dynamic axial response of pile shafts can be 
approached using the concept of a continuously 
distributed mechanical impedance replacing the 
embedding medium. Equivalent impedance parameters 
can be defined to characterize the equivalent in-phase 
‘spring’ and the equivalent out-of-phase ‘dashpot’. When 
considering a pile shaft undergoing axial oscillations, 
shear strains (and shear stresses) are induced in the 
surrounding soil, the amplitude of which attenuates 
radially away from the pile shaft. Analytical equivalent 
linear methods and a numerical method are shown to 
adequately derive those amplitudes of shear stresses and 
shear strains as functions of the radial distance r to the 
pile shaft. The corresponding dynamic impedance 
components are then readily determined.  

The analytical solution proposed herein 
accommodates a continuous variation of soil properties 
alleviating wave reflections and avoiding numerical 

convergence problems. By contrast, the semi-analytical 
method suffers from numerical limitations arising from 
the radial soil discretization. The semi-analytical method 
correctly models a radial variation of the soil hysteretic 
damping, contrary to the analytical method which 
assumes a homogeneous hysteretic damping.  

Similar approaches can be used to address the 
dynamic non linear response of piles under a lateral mode 
of deformation, as well as coupling effects between the 
axial and lateral modes of deformation [32]. 

Fig. 19. Shear stress developed at the pile shaft-soil interface as 
a function of the imposed cyclic displacement amplitude 
(analytical model with Table 1 parameters vs. typical static t-z 
curve)  

6 Notations 
The following symbols are used in this paper: 

a  = dimensionless frequency sVr /. 0ω  [-] 

*a = complex value of dimensionless frequency 

*
0 /.21/ sVria ωξ =+  [-] 

0a = dimensionless frequency for the pile shaft-soil 

interface 00 /. sVrω  [-] 

ffa  = dimensionless frequency in the free field 

ffVr /. 0ω  [-] 
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zC  = damping coefficient [kPa.s-1] 

{ } )./( 0szza GIC ωℑ=  = dimensionless damping 

parameter [-] 

f = “loading factor” or soil strength mobilization ratio at 

0rr =  [-] 

G = shear modulus [kPa] 
*G  = complex shear modulus )21.( ξiG +  [kPa] 

maxG  = initial (maximal) shear modulus [kPa] 

sG  = secant shear modulus [kPa] 

0sG  = shear modulus at the pile shaft-soil interface 

)( 0rr = [kPa] 

2
nH  = Hankel function νν iYJ −

0I  = modified Bessel function of order 0 of first type 

zI  = unit (lineal) shear impedance of the soil against the 
pile shaft movement in the z direction [kPa] 

υJ = Bessel function of order υ of first type 

k  = shear wave number sV/ω  [m-1] 

*k  = complex shear modulus
*/ sVω  [m-1] 

*
ffk = complex shear modulus in the free field 0

* / ra ff

[m-1] 

0K  = modified Bessel function of order 0 of second type 

zK  = the stiffness coefficient [kPa] 

zaK  = dimensionless stiffness { } 0/ sz GIℜ  [-] 

r  = distance to the pile shaft [m] 

0r  = pile shaft radius [m] 

mR = influence radius of shear strain field 

t  = time [s] 

sV = shear wave velocity ρ/sG  [m.s-1]

*
sV = complex value of shear wave velocity ρ/*

sG
[m.s-1] 

0sV  = shear wave velocity at the pile shaft-soil interface 

ρ/0sG  [m.s-1] 

ffV  = shear wave velocity in the free field ρ/maxG
[m.s-1] 

w  = displacement [m] 

cw  = time-independent value of displacement [m] 

ow  = displacement at the pile shaft [m] 

ocw  = amplitude of imposed displacement at the pile 

shaft [m] 

υY = Bessel function of order υ of second type 

γ = shear strain [-] 

γ� = shear strain rate [s-1] 

cγ  = amplitude of shear strain [-] 

rγ  = reference strain maxmax / Gτ  [-] 

ξ  = damping coefficient [-] 

ρ  = soil density [T/m³] 

τ  = shear stress [kPa] 

cτ  = amplitude of shear stress [kPa] 

0τ  = shear stress at the pile shaft-soil interface [kPa] 

c0τ  = amplitude of shear stress at the pile shaft-soil 

interface [kPa] 

maxτ  = maximal shear stress (shear strength) [kPa] 

ω  = circular frequency [rad.s-1] 

ς  = dimensionless distance to the pile shaft 1/ 0 >rr  [-] 

The asterisk indicates that the viscous soil behavior 
(characterized by the Kelvin-Voigt formulation) is taken 
into consideration. 
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