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a b s t r a c t

Much empiricism is involved in design of rock-socketed piles in rock masses. In light of this, an analytical
solution based on the cavity expansion theory is proposed for calculating the ultimate bearing capacity at
the tip of a pile embedded in rock masses obeying the Hoek-Brown failure criterion. The ultimate end
bearing capacity is evaluated by assuming that the pressure exerted at the boundaries of a pressure bulb
immediately beneath the pile tip is equal to the limit pressure required to expand a spherical cavity. In
addition, a relationship is derived to predict the pile load-settlement response. To demonstrate the
applicability of the presented solution, the results of this study were compared to those of 91 field tests
from technical literature. Despite the limitations, it is found that the end bearing resistance computed by
the present work is in good agreement with the field test results.
� 2020 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Piles are commonly-used forms of foundations that provide
support for structures, transferring their load to layers of soil or
rocks that have enough bearing capacity and suitable settlement
characteristics. Nevertheless, assessment of the base resistance of a
pile embedded in rock mass is a common issue in civil engineering
towards which several empirical approaches have been proposed
(Coates, 1965; Rowe and Armitage, 1987; Le Tirant and Marshall,
1992; Zhang and Einstein, 1998; Vipulanandan et al., 2007). Some
of these approaches are based on either full-scale in situ tests or
laboratory tests. The empirical relationships take the form of a
linear/power function of the unconfined compressive strength
(UCS) of the intact rock sci as

qb:ult ¼ asci
k (1)

where qb:ult is the ultimate end bearing capacity, and a and k are the
bearing capacity coefficients (dimensionless). Table 1 summarizes
the values of a and k for some empirical approaches.

To develop these empirical relations, different interpretations of
the load test data are used by original authors. According to those
e (H. Gharsallaoui).
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
y-nc-nd/4.0/).
interpretations, the ultimate end bearing capacity is defined byway
of conventions as:

(1) The bearing resistance at a certain pile head displacement,
say 10% of the pile diameter;

(2) The bearing resistance at a certain pile base displacement,
say 5% of the pile diameter; and

(3) The maximum applied test load.

Moreover, the ultimate end bearing capacity can be deduced by
using either the finite element method or the hyperbolic load
transfer function approach to analyze the load-displacement
response of the rock-socketed piles. Indeed, the measured load-
displacement curve can be matched and subsequently the ulti-
mate end bearing capacity can be determined at a certain pile base
or head settlement of 5% or 10%. Because of these different in-
terpretations, it is hard to figure out which one gives accurate es-
timations of ultimate limit state (ULS). Besides, the “so-called”
ultimate end bearing capacity determined from Eq. (1) is not
necessarily the ‘true’ ultimate one.

On the other hand, these empirical relations have limitations
related to using only the UCS of the intact rock sci to predict the
end bearing capacity. sci is only one of many other parameters that
affect the strength of the rock mass. With that in mind, Zhang
(2010) developed a new relation for determining qb:ult by consid-
ering the effect of discontinuities, represented by the rock quality
designation (RQD), on sci. Still, his empirical relation has limitation
related to using only RQD to represent the effect of discontinuities.
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Table 1
End bearing capacity coefficients for some empirical approaches.

Source a k

Coates (1965) 3 1
Rowe and Armitage (1987) 2.7 1
Le Tirant and Marshall (1992) 4.5 1
Zhang and Einstein (1998) 4.83 0.51
Vipulanandan et al. (2007) 4.66 0.56
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Many other factors of the rock mass rating (RMR) system such as
spacing, condition and orientation of discontinuities have a sig-
nificant effect on the strength of the rock mass. In light of this, rock
masses can be better characterized by the Hoek-Brown (HeB)
failure criterion (Hoek et al., 2002), which allows for rock structure
and surface conditions using the geological strength index (GSI).
Kulhawy and Prakoso (1999) stated that practicing engineers
should use GSI as an alternative to the RQD in order to prescribe the
rock surface state. As a result, this failure criterion has often been
used in the literature to provide analytical solutions. The analytical
methods for computing the end bearing capacity of piles are mostly
based on two general approaches: the method of characteristic
lines and the cavity expansion method.

Using the characteristic lines method, Serrano and Olalla (2002)
developed an analytical method for computing the bearing capacity
at the tip of a pile embedded in a rock mass that obeys the 1997
version of the HeB failure criterion (Hoek and Brown, 1997). Their
solution was later generalized for the 2002 version (Hoek et al.,
2002). Their derivation is based on the analyses of a wall in plane
strain conditions. By adopting an associated flow rule, they used the
characteristic lines method generalized for nonlinear failure crite-
rion to analyze the plastic zone. The major shortcoming of their
method is that the rock mass is hypothesized as rigid-plastic.
Hence, the bearing capacity does not depend on the elastic pa-
rameters of the rockmass. Besides, results gained from their theory,
when compared to in situ test results (Serrano et al., 2014), showed
a high scatter and did not yield satisfactory results which put in
doubt their methodology and its applicability to such problem.

In this paper, an analytical solution of pile end bearing capacity
is proposed by employing the cavity expansion method. In this
approach, the pile is assumed to be sufficiently embedded such that
surface effect is neglected. It is further assumed that the pressure
exerted at the boundaries of the pressure bulb of rock immediately
beneath the pile tip is equal to the limit pressure required to
expand a spherical cavity. Then the problem of pile end bearing
capacity reduces to determination of the limit pressure. To this end,
Gharsallaoui et al. (2019, 2020) developed an original relationship
between cavity expansion and pressure exerted to the cavity wall
for both perfectly plastic and brittle plastic HeB post failure. Be-
sides, an analytical solution of the limit pressure was proposed by
considering the problem of both cylindrical and spherical cavity
expansions in an infinite elasto-perfectly plastic HeB material, and
by adopting the large strain theory (Gharsallaoui et al., 2020).
Therefore, a solution for pile end bearing capacity problem will be
proposed based on the aforementioned analytical solutions of the
limit pressure.

This paper is organized as follows. A brief recall of the gener-
alized HeB failure criterion and its scaled form is provided in
Section 2. Description of the considered problem is detailed in
Section 3. Basic hypothesis for computing the limit pressure
required to expand a spherical cavity and the expression of the
analytical solution of the limit pressure are summarized in Section
4. Section 5 describes two failure mechanisms implemented for the
estimates of the ultimate end bearing capacity. Finally, a compari-
son with state of the art is given in Section 6.
2. Hoek-Brown material behavior

The HeB failure criterion was first introduced in 1980 with its
latest update in the 2018 edition (Hoek and Brown, 2019). It is
defined as (positive compressive stresses):

s01 ¼ s03 þ sci

�
mb

s03
sci

þ s
�a

(2)

where s01 and s03 denote, respectively, the major and minor prin-
cipal stresses at failure under triaxial loading conditions; and the
strength parameters mb, s and a describe the rock mass strength
characteristics and they depend on the GSI, the disturbance factorD
and the intact frictional strength parametermi. A detailed
description of the criterion can be found elsewhere (Hoek et al.,
2002).

It should be emphasized that the above failure criterion
expression can be simplified and scaled as formulated by
Gharsallaoui et al. (2019, 2020), to give the following form:

s*1 ¼ s*3 þ s*3
a

(3)

where s*1 and s*3 are the scaled (reflected by an asterisk as super-
script) major and minor principal stresses, respectively. Scaled
stresses are defined naturally as

s*j ¼
s0j

scim
b
b

þ s

mb=a
b

ðj ¼ 1 and 3Þ (4)

where b is a constant solely depending on the exponent as1, and
b ¼ a=ð1 � aÞ.

On the other hand, normal and shear stresses are related to
principal stresses by the following equations (Balmer, 1952):

s0n ¼ s01 þ s03
2

� s01 � s03
2

ds01
�
ds03 � 1

ds01
�
ds03 þ 1

(5)

s ¼ �
s01 � s03

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds01

�
ds03

q
ds01

�
ds03 þ 1

(6)

where s0n is the normal stress; s is the shear stress; and

ds01 =ds
0
3 ¼ 1þ amb

�
mb

s0
3

sci
þ s

�a�1
is obtained by direct derivation

of Eq. (2).
With the same manipulations, normal and shear stresses can be

scaled. It is found that their expressions are related to each other in
a parametric form depending exclusively on the scaled minor
principal stress s*3:

s*n ¼ s0n
scim

b
b

þ s

mb=a
b

¼ s*3 þ
s*3

a

ds*1
�
ds*3 þ 1

(7)

s* ¼ s

scim
b
b

¼ �
s*n � s*3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds*1

�
ds*3

q
¼ s*3

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds*1

�
ds*3

q
ds*1

�
ds*3 þ 1

(8)

where ds*1=ds
*
3 ¼ 1þ as*3

a�1
is obtained by direct derivation of

Eq. (3).
Use of Eqs. (7) and (8) rather than Eqs. (5) and (6) leads to

important simplification in the analysis of stresses in rock mass.
This will be detailed in Section 5, when considering the problem of



Fig. 1. Sketches of failure mechanisms around the pile tip: (a) Yasufuku and Hyde (1995), and (b) Vesic (1973).
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the ultimate end bearing capacity of a pile embedded in HeB
material.
3. Problem statement

An important assumption in the use of cavity expansion theory
in the context of pile end bearing capacity is that the pressure
exerted at the boundaries of the plastic bulb immediately beneath
the pile tip is equal to the limit pressure Plim required to expand a
spherical cavity. Then, the ultimate end bearing capacity qb:ult can
be related to the limit pressure based on two modes.

The failure mechanism of mode 1, which was initially postulated
by Yasufuku and Hyde (1995) for crushable sand, is illustrated in
Fig. 1. In this mode, active earth pressure conditions are considered
to exist immediately beneath the pile tip and moment equilibrium
is considered about point B. The ultimate bearing capacity of this
mode can be found as a function of the friction angle f of the soil as

ðqb:ultÞ1 ¼ Plim
1 � sin f

(9)

The failure mechanism of mode 2 is also illustrated in Fig. 1
(Vesic, 1973). This method assumes a rigid cone of soil beneath
the pile tip, with an angle a ¼ p=4þ f=2. Outside the conical re-
gion, it is assumed that the normal stress acting on the cone face is
equal to the limit pressure Plim. A relationship between ðqb:ultÞ2 and
Plim can be obtained considering vertical equilibrium, i.e.

ðqb:ultÞ2 ¼ Plim þ s tan a (10)

where the shear stress s is given as per Eq. (6).
It should be emphasized that unlike the model proposed by

Yasufuku and Hyde (1995), the Vesic (1973)’s model takes into
account both cohesion and friction angle of the soil. Given that an
HeB material is characterized by an instantaneous cohesion and an
instantaneous friction angle (depending on the confining stress),
the Vesic (1973)’s model is considered to be more reasonable to
describe the failure mechanism of pile embedded in HeB material.
A comparison between results gained from these two modes is
detailed in Section 5.

For both modes, all that remains is to provide how the limit
pressure of a spherical cavity is calculated for a material obeying
the nonlinear HeB failure criterion. This will be summarized in the
following section.
4. Limit pressure for expanding spherical cavity

In this section, we evaluated the limit pressure required to
expand a spherical cavity in HeB material. Details of how the
expression of the limit pressure was derived could be found in
Gharsallaoui et al. (2020). Only basic hypothesis and main results
are presented hereinafter.
4.1. Basic hypothesis

A spherical cavity expansion in an infinite elasto-perfectly
plastic HeB material is considered. The geometry of the problem
and the boundary conditions are depicted in Fig. 2. Let ri be the
internal radius of the cavity and P0 the far field radial pressure. Let
Pi be the internal pressure applied on cavity wall that increases
monotonically from its initial value P0. As the internal pressure Pi
increases, the rock mass will initially behave in an elastic manner,
until reaching a yield pressure Pyield. When the internal pressure Pi
exceeds Pyield, a plastic region will start spreading from ri to the
“plastic” radius rp. The remainder of the domain (r � rp) belongs to
the elastic region.

Note that the major and minor principal stresses are assumed to
be equal to the radial and circumferential stresses, respectively, i.e.
s1 ¼ sr and s3 ¼ sq.



Fig. 2. Geometry of the problem and boundary conditions.

H. Gharsallaoui et al. / Journal of Rock Mechanics and Geotechnical Engineering 12 (2020) 1103e11111106
4.2. Limit pressure

By adopting the large strain theory, Gharsallaoui et al. (2020)
demonstrated that cavity expansion and pressure exerted to the
cavity wall are related to each other by the following implicit
relationship:

�
ri
ri0

�2uþ1

¼ U2uþ1

ð1� dÞ2uþ1 � 1
h

Z Ri

Rp

D1½aW0ðrÞ�
b
a þ D2½aW0ðrÞ�b

r
bð2uþ1Þ

2 þ1
dr

(11)

where ri0 is the original cavity radius before cavity expansion
starts; U is the inverse of the normalized plastic radius defined by
U ¼ ri =rp ¼ ðRp=RiÞb=k; u is the dilatancy coefficient computed by
u ¼ ð1�sin jÞ=ð1þsin jÞwith j as the dilatancy angle; and D1, D2
and h are the dimensionless coefficients defined as
Fig. 3. Limit pressure chart by setting j ¼ 0� and n ¼ 0:25 (after Gharsallaoui et al., 2020).
curves from top to bottom.
D1 ¼ ð1þ 2uÞð1� 2nÞ
2Irð1þ nÞ

D2 ¼ 1� 2nu
2Irð1þ nÞ

h ¼
eD1P*

0

�
b
2uþ 1

2

��1

R
b 2uþ1

2
p

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(12)

The parameter d in Eq. (11) is the normalized displacement at
the elasto-plastic boundary, which is expressed as a function of the
rigidity index and the scaled far field and yields pressures as

d ¼ 1
4Ir

�
P*y � P*0

	
(13a)

where

Ir ¼ G

sci m
b
b

(13b)

The parameters Rp and Ri in Eq. (11) are the lower and upper
integration limits, respectively. They are defined as solutions of the
following equations:

P*y ¼ 

aW0

�
Rp

��b=a þ 

aW0

�
Rp

��b (14)

P*i ¼ ½aW0ðRiÞ�b=a þ ½aW0ðRiÞ�b (15)

The parameter W0 in Eq. (11) is the 0th branch of the Lambert
function (Omega function). Note that the scaled yield pressure P*y
should be computed from the following expression:

�
P*y � P*0

	
¼ � 1

2

�
P*y � P*0

	
þ
�
P*0 �

1
2

�
P*y � P*0

	
a
(16)

The above equation provides an explicit solution when a ¼ 0:5
as
Values of I�1
r ¼ 10�3, 5 � 10�3, 10�2, 5 � 10�2, 10�1, and 1 correspond to the groups of



Fig. 4. ‘True’ ultimate bearing capacity for failure mechanisms of modes 1 and 2.
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P*y ja¼0:5
¼ P*0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36P*0 þ 1

q
� 1

9
(17)
Table 2
Rock mass properties and computed end bearing resistance qb for different settlement v

Input parameters HeB derived and intermediate parameters Limit pressure a
ultimate end bea

mi 2 a 0.5 P*lim as per Eq. (1
sci (MPa) 25 mb 2 ðq*b:ultÞ1 as per E
GSI 100 s 1 ðq*b:ultÞ2 as per E
Ei=sci 150 b 1
Erm (GPa) 3.73 P*0 0.255
n 0.251 Ir 29.8
P0 (MPa) 0.25
When as0:5, there is no explicit solution and Eq. (16) should be
solved numerically. On the other hand, the scaled limit pressure
P*lim can be found by putting ri=ri0/þN in Eq. (11), i.e.

hð1� dÞ2uþ1 �
ZRi

Rp

eD1½aW0ðrÞ�
b
aþD2½aW0ðrÞ�b

r
bð2uþ1Þ

2 þ1
dr ¼ 0 (18)

It can be noted from Eqs. (11)e(18) that P*lim depends on five
main parameters, which are the far field pressure P*0, the rigidity
index Ir, the Poisson’s ratio n, the dilatancy angle j and the expo-
nent a (i.e. GSI).

A closed-form solution of the limit pressure can be provided by
assuming an intact ða ¼ 0:5Þ, incompressible ðn ¼ 0:5Þ HeB ma-
terial with no plastic volume change (j ¼ 0�Þ:

P*lim ¼
�
W0ðC1Þ

2


2
þW0ðC1Þ

2
(19a)

where

C1 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P*y ja¼0:5

þ 1
q

� 1
	
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P*

y ja¼0:5
þ1

q
�1

h
1� ð1� dÞ3

i2
3

(19b)

A chart allowing easy and accurate estimation of the limit
pressure is depicted in Fig. 3. The chart is created for j ¼ 0�. This
value leads to conservative estimations of the limit pressure.
Indeed, Manandhar and Yasufuku (2013) stated that no plastic
volumetric strain should be assumed when computing Plim, i.e. the
dilatancy angle will be considered to be zero for large strain
analyses.
5. End bearing capacity

In this section, details of how the ultimate end bearing capacity
is calculated are given below firstly for failure mechanism of mode
1 and then for mode 2. For failure mechanism of mode 1, the
relationship between ðqb:ultÞ1 and Plim is given as per Eq. (9).
Knowing that the friction angle f is determined from the slope of
the tangent to the HeB failure envelope as

ds*r
ds*

q

¼ tan2
�p
4
þf

2

	
¼ 1þ as*q

a�1
(20)

By substituting the above expression into Eq. (9) and after some
derivations, it is demonstrated that the scaled ultimate end bearing
capacity ðq*b:ultÞ1 and the scaled limit pressure P*lim are related to
each other using a parametric form depending exclusively on the
scaled circumferential stress s*

q as follows:
alues.

nd
ring capacity for both modes

Pile end bearing resistance for both modes

sb=B ðqbÞ1 (MPa) ðqbÞ2 (MPa)

8) 2.86 10% 44.7 49.5
q. (21) 3.38 20% 69.5 77
q. (21) 3.71 50% 104.3 115.5

100% 125.1 138.6
þN 156.4 173.2



Fig. 5. Ultimate end bearing capacity as a function of the unconfined compressive strength sci: Field test vs. empirical relations from Coates (1965), Rowe and Armitage (1987),
Le Tirant and Marshall (1992), Zhang and Einstein (1998), and Vipulanandan et al. (2007).
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�
q*b:ult

�
1 ¼ s*q þ

�
1þ a

2

	
s*q

a þ a
2
s*q

2a�1 � s

mb=a
b

a
2
s*q

a�1

P*lim ¼ s*q þ s*q
a

9>>=
>>;

(21)

For failure mechanism of mode 2, the relationship
between ðqb:ultÞ2 and Plim given as per Eq. (10) is further expressed
in a scaled form as

�
q*b:ult

�
2 ¼ P*lim þ s* tan a (22a)

where

a ¼ p
4
þ f

2
(22b)
Fig. 6. End bearing resistance: Present work solution vs. empirical approach
Subsuming Eqs. (8) and (20) into Eq. (22a) results in following
parametric form relating ðq*b:ultÞ2 and P*lim by means of s*

q
as

�
q*b:ult

�
2 ¼ s*q þ s*q

a

P*lim ¼ s*q þ
s*q

a

2þ as*q
a�1

9>=
>; (23)

The evolutions of both ðq*b:ultÞ1 and ðq*b:ultÞ2 as a function of P*lim
are depicted in Fig. 4 for different values of the exponent a (i.e. GSI)
and by setting mi ¼ 10. As can be seen, the ultimate end bearing
capacity values derived from both modes are close to each other
when P*lim > 0:37 whereas mode 2 offers conservative values when
P*lim < 0:37. It is also observed that the ultimate end bearing ca-
pacity values are relatively constant when GSI > 30.
es from Le Tirant and Marshall (1992) and Vipulanandan et al. (2007).



Fig. 7. Load-displacement curves: Present work vs. field test.
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On the other hand, due to the high capacity of piles in rock
masses, it is rarely possible to mobilize the bearing capacity cor-
responding to the ultimate limit state. As a result, it is important to
estimate the end bearing capacity of a pile at a certain settlement
level at the pile base in the context of performance-based design. In
light of this, it will be necessary to compute the ultimate bearing
capacity and the load-settlement behavior of piles. To achieve this,
it will be further assumed that the volume of rock mass immedi-
ately beneath the pile tip which is displaced due to the pile
settlement sb is equal to the increase of spherical cavity volume, i.e.

sb
pB2

4
¼ 4

3
p
�
r3i � r3i0

	
(24)

The instantaneous cavity radius ri can be expressed as a function
of the pile base diameter B as (Yang, 2006):

ri ¼
B

2 cos f
(25)

Therefore, Eq. (24) can be further expressed as

sb
B

¼ 2
3

1�
�
ri0
ri

�3

cos3 f
(26)

where ri0=ri is given as per Eq. (11). Referring to Eq. (20), the term
cos f in Eq. (26) can be substituted by the following expression
depending exclusively on the circumferential stress s*

q
ðRiÞ as

cos f ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ as*

q

a�1
q

2þ as*
q

a�1 (27a)

where

s*qðRiÞ ¼ ½aW0ðRiÞ�
b
a (27b)

To sum up, the procedure described below should be followed to
evaluate the ultimate end bearing capacity (sb=B/þ N) as well as
the end bearing resistance for a given settlement sb= B of a pile
embedded in HeB material:

(1) Choose input parameters: mi, sci, D, P0, G (or E), n and j ¼
0�;

(2) Evaluate HeB derived parameters: a, mb and s;
(3) Evaluate intermediate parameters: P*0 ¼ P0

scim
b
b

þ s
mb=a

b

and
Ir ¼ G

scim
b
b

;

(4) Evaluate the scaled limit pressure P*lim as per Eq. (18) or read
it approximately from spherical cavity chart (cf. Fig. 3);

(5) Evaluate the scaled ultimate end bearing capacity q*b:ult for
both modes using Eqs. (21) and (23); and

(6) Evaluate the endbearing resistance for a given settlement sb=B
using Eq. (11) combined with Eq. (26) for P*i . Then, q

*
b is eval-

uated as per Eq. (21) formode 1 and as per Eq. (23) formode 2.

An example is given below for computing the ultimate end
bearing capacity as well as the end bearing resistance of a pile
embedded in HeB material with properties similar to that of an
undisturbed ðD ¼ 0Þ claystone (Hoek, 2006). Table 2 summarizes
the rock mass properties and the computed end bearing resistance
qb for different settlement values.
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6. Comparison with field test results

To demonstrate the applicability of the proposed analytical so-
lution, 91 field tests from the technical literature are summarized in
Table A1 in the Appendix. For each case, the rock layer character-
istics, measured end bearing resistance and settlements were
identified.

It is further assumed that all rocks listed in Table A1 obey the He
B failure criterion. Indeed, these type of rocks were characterized as
HeB material and their parameters are published in Hoek (2006).

In order to compute the bearing capacity, the elastic and me-
chanical properties of the rock mass (deformation modulus Erm,
UCS, etc.) were retrieved from the original papers. However, it was
still necessary to estimate the parameters of the HeB criterion: GSI,
mi and the elastic modulus for some particular cases. The param-
etermi was estimated based on published guidelines and tables for
different rock types (Hoek, 2006). Similarly, the elastic modulus of
intact rock was also estimated based on rock type when necessary
(Hoek and Diederichs, 2006).

In order to profit from the large amount of test data accumu-
lated using the traditional RMR system, the GSI values can be
calculated after Hoek et al. (2013) as

GSI ¼ 1:5JCond89þ RQD=2 (28)

where JCond89 denotes the joint condition rating that varies from
0 to 30.When RQDwas not available, the GSI values were estimated
based on the rock surface description in the original papers.

Finally, the analytical and measured end bearing resistances are
compared in Table A1. The results indicate the crucial role of
incorporating the allowable pile settlement in the bearing capacity
computations.

A comparison between measured end bearing capacity and
those predicted from the empirical relations (Eq. (1)) is depicted in
Fig. 5. As can be seen, significant scatter exists. This may be
attributed to the fact that these empirical relations rely only on the
UCS of the intact rockmass sci and do not take into account the rock
structure and surface conditions represented by GSI. The measured
end bearing resistance is plotted against the computed bearing
resistance in Fig. 6. For analytical solution, the mean values of
modes 1 and 2 were considered. As can be seen, the present work
solution provides better estimations in comparison with the
empirical method (Eq. (1)).

To better demonstrate the benefits of the proposed method, the
measured loadedisplacement curve is visualized against the
computed curve according to the present work. Fig. 7 displays these
curves for cases 2, 3, 4, 6, 7, 8, 74, 86, 87 and 89. As observed, the
general trends of the curves agree well.
7. Conclusions

An analytical method for computing the ultimate end bearing
capacity qb:ult of a pile embedded in a rockmass that obeys the HeB
failure criterion was proposed. This method was developed based
on the assumption that the pressure exerted at the boundaries of
the bulb of rock immediately beneath the pile tip is equal to the
limit pressure Plim required to expand a spherical cavity. To
compute the limit pressure, an analytical solution which required a
numerical integration over the plastic region was presented.
Thereafter, qb:ult was evaluated as a function of Plim by adopting two
failure mechanisms around the pile tip. The limit pressure was
computed by assuming a no dilatant HeB material ðj ¼ 0�Þ. This
assumptionwas on the conservative side since Plim increased for an
increasing j value.
Results derived from the present work were compared to field
load test results of 91 specific cases. It is found that developed
solution agreed well with experimental results.

However, the existing empirical relations for estimating the
ultimate end bearing capacity do not give reliable estimates. These
empirical relations have limitations related to using only the UCS of
the intact rock sci to predict the end bearing capacity and this
parameter is only one of many other parameters that affect the
strength of the rock.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
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Nomenclature

ri Cavity radius
r Radial coordinate
rp Plastic radius
Pi Internal cavity pressure
Py Yield pressure
P0 Far field pressure
Plim Limit pressure
qb End bearing resistance
qb:ult Ultimate end bearing capacity
GSI Geological strength index of the rock
RMR Rock mass rating
mi Strength parameter of the intact rock
D Disturbance factor of the rock
s; a; mb Hoek-Brown derived parameters
Ei Deformation modulus of the intact rock
Erm Deformation modulus of the rock
G Shear modulus
Ir Rigidity index
s01 Major principal stress
s03 Minor principal stress
sr Radial stress assumed equal to s01
sq Circumferential stress assumed equal to s03
sci Uniaxial compressive stress of the intact rock
sh Active earth pressure
s Shear stress
s0n Normal stress
n Poisson’s ratio
f Friction angle of the rock mass
j Dilatancy angle of the rock mass
u Dilatancy coefficient
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